Generalized pairwise comparisons for censored data: An overview

被引:8
|
作者
Deltuvaite-Thomas, Vaiva [1 ]
Verbeeck, Johan [2 ]
Burzykowski, Tomasz [1 ,2 ]
Buyse, Marc [1 ,2 ]
Tournigand, Christophe [3 ]
Molenberghs, Geert [2 ,4 ]
Thas, Olivier [2 ,5 ,6 ]
机构
[1] Int Drug Dev Inst IDDI, 30 Av Prov, B-1341 Louvain La Neuve, Belgium
[2] Hasselt Univ, Interuniv Inst Biostat & Stat Bioinformat I BioSt, Data Sci Inst DSI, Hasselt, Limburg, Belgium
[3] Univ Paris Est Creteil, Univ Hosp Henri Mondor, Med Oncol Dept, Creteil, France
[4] Katholieke Univ Leuven, Interuniv Inst Biostat & Stat Bioinformat I BioSt, Leuven, Belgium
[5] Univ Ghent, Dept Appl Math Comp Sci & Stat, Ghent, Belgium
[6] Univ Wollongong, Natl Inst Appl Stat Res Australia NIASRA, Wollongong, NSW, Australia
关键词
bias; censored outcome; generalized pairwise comparisons; net benefit; statistical power; PRIORITIZED OUTCOMES; PROBABILISTIC INDEX; CLINICAL-TRIALS; WIN-RATIO; MULTIPLE; STATISTICS;
D O I
10.1002/bimj.202100354
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The method of generalized pairwise comparisons (GPC) is an extension of the well-known nonparametric Wilcoxon-Mann-Whitney test for comparing two groups of observations. Multiple generalizations of Wilcoxon-Mann-Whitney test and other GPC methods have been proposed over the years to handle censored data. These methods apply different approaches to handling loss of information due to censoring: ignoring noninformative pairwise comparisons due to censoring (Gehan, Harrell, and Buyse); imputation using estimates of the survival distribution (Efron, Peron, and Latta); or inverse probability of censoring weighting (IPCW, Datta and Dong). Based on the GPC statistic, a measure of treatment effect, the "net benefit," can be defined. It quantifies the difference between the probabilities that a randomly selected individual from one group is doing better than an individual from the other group. This paper aims at evaluating GPC methods for censored data, both in the context of hypothesis testing and estimation, and providing recommendations related to their choice in various situations. The methods that ignore uninformative pairs have comparable power to more complex and computationally demanding methods in situations of low censoring, and are slightly superior for high proportions (>40%) of censoring. If one is interested in estimation of the net benefit, Harrell's c index is an unbiased estimator if the proportional hazards assumption holds. Otherwise, the imputation (Efron or Peron) or IPCW (Datta, Dong) methods provide unbiased estimators in case of proportions of drop-out censoring up to 60%.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] On the use of extreme value tail modeling for generalized pairwise comparisons with censored outcomes
    De Backer, Mickael
    Legrand, Catherine
    Peron, Julien
    Lambert, Alexandre
    Buyse, Marc
    PHARMACEUTICAL STATISTICS, 2023, 22 (02) : 284 - 299
  • [2] Operational characteristics of generalized pairwise comparisons for hierarchically ordered endpoints
    Deltuvaite-Thomas, Vaiva
    Burzykowski, Tomasz
    PHARMACEUTICAL STATISTICS, 2022, 21 (01) : 122 - 132
  • [3] Generalized pairwise comparisons of prioritized outcomes in the two-sample problem
    Buyse, Marc
    STATISTICS IN MEDICINE, 2010, 29 (30) : 3245 - 3257
  • [4] Exact Permutation and Bootstrap Distribution of Generalized Pairwise Comparisons Statistics
    Anderson, William N.
    Verbeeck, Johan
    MATHEMATICS, 2023, 11 (06)
  • [5] Operational characteristics of univariate generalized pairwise comparisons with missing data
    Deltuvaite-Thomas, Vaiva
    Burzykowski, Tomasz
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025, 54 (02) : 342 - 360
  • [6] Impact of correlations between prioritized outcomes on the net benefit and its estimate by generalized pairwise comparisons
    Fuyama, Kanako
    Ogawa, Mitsunori
    Mizusawa, Junki
    Kanemitsu, Yukihide
    Fujita, Shin
    Kawahara, Takuya
    Sakamaki, Kentaro
    Oba, Koji
    STATISTICS IN MEDICINE, 2023, 42 (10) : 1606 - 1624
  • [7] Generalized Pairwise Comparisons to Assess Treatment Effects JACC Review Topic of the Week
    Verbeeck, Johan
    De Backer, Mickael
    Verwerft, Jan
    Salvaggio, Samuel
    Valgimigli, Marco
    Vranckx, Pascal
    Buyse, Marc
    Brunner, Edgar
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 82 (13) : 1360 - 1372
  • [8] Covariate-adjusted generalized pairwise comparisons in small samples
    Jaspers, Stijn
    Verbeeck, Johan
    Thas, Olivier
    STATISTICS IN MEDICINE, 2024, 43 (21) : 4027 - 4042
  • [9] Individualized Net Benefit estimation and meta-analysis using generalized pairwise comparisons in N-of-1 trials
    Giai, Joris
    Peron, Julien
    Roustit, Matthieu
    Cracowski, Jean-Luc
    Roy, Pascal
    Ozenne, Brice
    Buyse, Marc
    Maucort-Boulch, Delphine
    STATISTICS IN MEDICINE, 2023, 42 (06) : 878 - 893
  • [10] Generalized pairwise comparisons of prioritized outcomes are a powerful and patient-centric analysis of multi-domain scores
    Vaiva Deltuvaite-Thomas
    Mickaël De Backer
    Samantha Parker
    Marie Deneux
    Lynda E. Polgreen
    Cara O’Neill
    Samuel Salvaggio
    Marc Buyse
    Orphanet Journal of Rare Diseases, 18