OFDMA-based unsourced random access in LEO satellite Internet of Things

被引:2
作者
Fang, Jjiaqi [1 ,2 ]
Sun, Gangle [1 ,2 ]
Wang, Wenjin [1 ,2 ]
You, Li [1 ,2 ]
Ding, Rui [3 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Labs, Nanjing 210096, Peoples R China
[2] Purple Mt Labs, Nanjing 211100, Peoples R China
[3] CAST, Inst Telecommun Satellite, Beijing 100094, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Low earth orbit satellites; Decoding; OFDM; Satellites; Satellite broadcasting; Encoding; Costs; LEO; OFDMA; satellite; unsourced random access; UPA; RESOURCE-ALLOCATION; MOBILE;
D O I
10.23919/JCC.fa.2023-0354.202401
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
This paper investigates the low earth orbit (LEO) satellite-enabled coded compressed sensing (CCS) unsourced random access (URA) in orthogonal frequency division multiple access (OFDMA) framework, where a massive uniform planar array (UPA) is equipped on the satellite. In LEO satellite communications, unavoidable timing and frequency offsets cause phase shifts in the transmitted signals, substantially diminishing the decoding performance of current terrestrial CCS URA receiver. To cope with this issue, we expand the inner codebook with predefined timing and frequency offsets and formulate the inner decoding as a tractable compressed sensing (CS) problem. Additionally, we leverage the inherent sparsity of the UPA-equipped LEO satellite angular domain channels, thereby enabling the outer decoder to support more active devices. Furthermore, the outputs of the outer decoder are used to reduce the search space of the inner decoder, which cuts down the computational complexity and accelerates the convergence of the inner decoding. Simulation results verify the effectiveness of the proposed scheme.
引用
收藏
页码:13 / 23
页数:11
相关论文
共 28 条
[1]   Toward Global IoT-Enabled Smart Cities Interworking Using Adaptive Semantic Adapter [J].
An, Jonggwan ;
Le Gall, Franck ;
Kim, Jaeho ;
Yun, Jaeseok ;
Hwang, Jaeyoung ;
Bauer, Martin ;
Zhao, Mengxuan ;
Song, Jaeseung .
IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (03) :5753-5765
[2]   A MEC-Based Extended Virtual Sensing for Automotive Services [J].
Avino, Giuseppe ;
Bande, Paolo ;
Frangoudis, Pantelis A. ;
Vitale, Christian ;
Casetti, Claudio ;
Chiasserini, Carla Fabiana ;
Gebru, Kalkidan ;
Ksentini, Adlen ;
Zennaro, Giuliana .
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2019, 16 (04) :1450-1463
[3]  
Cisco Systems Inc., 2020, Annual internet report
[4]   Intelligent Offloading Strategy Design for Relaying Mobile Edge Computing Networks [J].
Guo, Yinghao ;
Zhao, Zichao ;
Zhao, Rui ;
Lai, Shiwei ;
Dan, Zou ;
Xia, Junjuan ;
Fan, Liseng .
IEEE ACCESS, 2020, 8 :35127-35135
[5]  
He K, 2020, IEEE ANN INT CONF CY, P1, DOI 10.1109/CYBER50695.2020.9279192
[6]   Generation of Millimeter-Wave Nondiffracting Airy OAM Beam Using a Single-Layer Hexagonal Lattice Reflectarray [J].
Huang, Yuhan ;
Li, Xiuping ;
Akram, Zaid ;
Zhu, Hua ;
Qi, Zihang .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2021, 20 (06) :1093-1097
[7]   Edge Nodes Placement in 5G enabled Urban Vehicular Networks: A Centrality-based Approach [J].
Laha, Moyukh ;
Kamble, Suraj ;
Datta, Raja .
2020 TWENTY SIXTH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC 2020), 2020,
[8]   Deep Learning-Inspired Message Passing Algorithm for Efficient Resource Allocation in Cognitive Radio Networks [J].
Liu, Miao ;
Song, Tiecheng ;
Hu, Jing ;
Yang, Jie ;
Gui, Guan .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (01) :641-653
[9]  
Liu S., 2021, IEEE Trans. Intell. Transport.Syst.
[10]   High-Reliability and Low-Latency Wireless Communication for Internet of Things: Challenges, Fundamentals, and Enabling Technologies [J].
Ma, Zheng ;
Xiao, Ming ;
Xiao, Yue ;
Pang, Zhibo ;
Poor, H. Vincent ;
Vucetic, Branka .
IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (05) :7946-7970