Physics-Dominated Neural Network for Spatiotemporal Modeling of Battery Thermal Process

被引:17
作者
Deng, Hai-Peng [1 ]
He, Yan-Bo [2 ]
Wang, Bing-Chuan [2 ]
Li, Han-Xiong [3 ]
机构
[1] Cent South Univ, Sch Mech & Elect Engn, State Key Lab High Performance Complex Mfg, Changsha 410083, Hunan, Peoples R China
[2] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
[3] City Univ Hong Kong, Dept Adv Design & Syst Engn, Hong Kong, Peoples R China
关键词
Batteries; Temperature sensors; Temperature distribution; Sensors; Mathematical models; Behavioral sciences; Neural networks; Physics-dominated neural network; power and energy; sparse sensor data; thermal process modeling; transient heat source; PDE SYSTEMS; RUNAWAY;
D O I
10.1109/TII.2023.3266404
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Modeling the temperature distribution of a battery is critical to its safe operation. Data-based modeling methods are computationally efficient, but require a large number of sensors, whereas physics-based modeling methods have better generalization, but the unknown dynamics of the actual scene are ignored. A physics-dominated neural network is presented to integrate electric-thermal mechanism of the battery and data information through a weight adaptive function. The electric-thermal coupling equation of the battery under complex conditions is taken as the prior knowledge to update parameters of the network, whereas the characteristic data obtained by the unique sensor are used to compensate the unknown disturbance in the actual scene. A well-trained model can predict the temperature distribution of the battery over entire space with a single sensor, and can also provide reasonable predictions for longer periods of time under extreme conditions. Experiments show that the proposed method outperforms traditional methods that rely only on pure data or pure physics.
引用
收藏
页码:452 / 460
页数:9
相关论文
共 32 条
[21]   Low-effort determination of heat capacity and thermal conductivity for cylindrical 18650 and 21700 lithium-ion cells [J].
Steinhardt, Marco ;
Gillich, Elisabeth Irene ;
Rheinfeld, Alexander ;
Kraft, Ludwig ;
Spielbauer, Markus ;
Bohlen, Oliver ;
Jossen, Andreas .
JOURNAL OF ENERGY STORAGE, 2021, 42
[22]   Two-phase separation based spatiotemporal modeling of thermal processes with applications to lithium-ion batteries [J].
Wang, Bing-Chuan ;
Feng, Yun ;
Wang, Shuqiang .
JOURNAL OF ENERGY STORAGE, 2022, 49
[23]   Spatial Correlation-Based Incremental Learning for Spatiotemporal Modeling of Battery Thermal Process [J].
Wang, Bing-Chuan ;
Li, Han-Xiong ;
Yang, Hai-Dong .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (04) :2885-2893
[24]   A Sliding Window Based Dynamic Spatiotemporal Modeling for Distributed Parameter Systems With Time-Dependent Boundary Conditions [J].
Wang, Bing-Chuan ;
Li, Han-Xiong .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (04) :2044-2053
[25]   Dynamic thermophysical modeling of thermal runaway propagation and parametric sensitivity analysis for large format lithium-ion battery modules [J].
Wang, Huaibin ;
Liu, Bo ;
Xu, Chengshan ;
Jin, Changyong ;
Li, Kuijie ;
Du, Zhiming ;
Wang, Qinzheng ;
Ouyang, Minggao ;
Feng, Xuning .
JOURNAL OF POWER SOURCES, 2022, 520
[26]   Spatial-Construction-Based Abnormality Detection and Localization for Distributed Parameter Systems [J].
Wei, Peng ;
Li, Han-Xiong ;
Xie, Shengli .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (07) :4707-4714
[27]   A data-driven spatiotemporal model predictive control strategy for nonlinear distributed parameter systems [J].
Xu, Bowen ;
Lu, Xinjiang .
NONLINEAR DYNAMICS, 2022, 108 (02) :1269-1281
[28]   Deep Extreme Learning Machines Based Two-Phase Spatiotemporal Modeling for Distributed Parameter Systems [J].
Xu, Kangkang ;
Yang, Haidong ;
Zhu, Chengjiu ;
Jin, Xi ;
Fan, Bi ;
Hu, Luoke .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (03) :2919-2929
[29]   Locally Weighted Principal Component Analysis-Based Multimode Modeling for Complex Distributed Parameter Systems [J].
Xu, Kangkang ;
Fan, Bi ;
Yang, Haidong ;
Hu, Luoke ;
Shen, Wenjing .
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (10) :10504-10514
[30]   Fast Modeling of Battery Thermal Dynamics Based on Spatio-Temporal Adaptation [J].
Zhou, Yu ;
Li, Han-Xiong ;
Xie, Sheng-Li .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (01) :337-344