Multivariate functional subspace classification for high-dimensional longitudinal data

被引:2
作者
Fukuda, Tatsuya [1 ]
Matsui, Hidetoshi [2 ]
Takada, Hiroya [3 ]
Misumi, Toshihiro [4 ]
Konishi, Sadanori [5 ]
机构
[1] TDSE Inc, 3-20-2 Nishi Shinjuku,Shinjuku Ku, Tokyo 1631427, Japan
[2] Shiga Univ, Fac Data Sci, 1-1-1 Banba, Hikone, Shiga 5228522, Japan
[3] Cacco Inc, 1-5-31 Motoakasaka,Minato Ku, Tokyo 1070051, Japan
[4] Natl Canc Ctr Hosp East, Dept Data Sci, 6-5-1 Kashiwanoha, Kashiwa, Chiba 2778577, Japan
[5] Kyushu Univ, Fac Math, 744 Motooka,Nishi Ku, Fukuoka, Fukuoka 8190395, Japan
关键词
Classification; Functional data analysis; High-dimensional data; Subspace method;
D O I
10.1007/s42081-023-00226-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a multi-class classification method for multivariate functional data using the subspace method. The subspace method reduces the dimension of data for each class by mapping the data onto the subspaces, and then classifies the data to the class with the largest similarity to the subspace. We apply multivariate functional principal component analysis to the data for each class to obtain the subspaces. Since the subspace based on the functional data depends on time, we integrate the similarity between the data to be classified and the subspace. The proposed method can be easily applied to high-dimensional data, since it greatly reduces the dimension of the data. Simulation and real data analysis show that our method provides effective classification results.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 29 条
  • [1] Functional regression modeling via regularized Gaussian basis expansions
    Araki, Yuko
    Konishi, Sadanori
    Kawano, Shuichi
    Matsui, Hidetoshi
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2009, 61 (04) : 811 - 833
  • [2] Principal components for multivariate functional data
    Berrendero, J. R.
    Justel, A.
    Svarc, M.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (09) : 2619 - 2634
  • [3] Variable selection in classification for multivariate functional data
    Blanquero, Rafael
    Carrizosa, Emilio
    Jimenez-Cordero, Asuncion
    Martin-Barragan, Belen
    [J]. INFORMATION SCIENCES, 2019, 481 : 445 - 462
  • [4] BREIMAN L., 1984, Technical report
  • [5] Subspace Learning for Facial Age Estimation Via Pairwise Age Ranking
    Chen, Yi-Lei
    Hsu, Chiou-Ting
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2013, 8 (12) : 2164 - 2176
  • [6] AN OUTLYINGNESS MATRIX FOR MULTIVARIATE FUNCTIONAL DATA CLASSIFICATION
    Dai, Wenlin
    Genton, Marc G.
    [J]. STATISTICA SINICA, 2018, 28 (04) : 2435 - 2454
  • [7] Dou X., 2006, J JAPANESE SOC COMPU, V19, P13
  • [8] Efron B, 2016, INST MATH STAT MG, P1, DOI 10.1017/CBO9781316576533
  • [9] Fernandez-Fontelo A., 2022, CLASSIFICATION ENSEM
  • [10] The Mahalanobis Distance for Functional Data With Applications to Classification
    Galeano, Pedro
    Joseph, Esdras
    Lillo, Rosa E.
    [J]. TECHNOMETRICS, 2015, 57 (02) : 281 - 291