Classification;
Functional data analysis;
High-dimensional data;
Subspace method;
D O I:
10.1007/s42081-023-00226-x
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We propose a multi-class classification method for multivariate functional data using the subspace method. The subspace method reduces the dimension of data for each class by mapping the data onto the subspaces, and then classifies the data to the class with the largest similarity to the subspace. We apply multivariate functional principal component analysis to the data for each class to obtain the subspaces. Since the subspace based on the functional data depends on time, we integrate the similarity between the data to be classified and the subspace. The proposed method can be easily applied to high-dimensional data, since it greatly reduces the dimension of the data. Simulation and real data analysis show that our method provides effective classification results.
机构:
King Abdullah Univ Sci & Technol, CEMSE Div, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol, CEMSE Div, Thuwal 239556900, Saudi Arabia
Dai, Wenlin
Genton, Marc G.
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol, CEMSE Div, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol, CEMSE Div, Thuwal 239556900, Saudi Arabia
机构:
King Abdullah Univ Sci & Technol, CEMSE Div, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol, CEMSE Div, Thuwal 239556900, Saudi Arabia
Dai, Wenlin
Genton, Marc G.
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol, CEMSE Div, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol, CEMSE Div, Thuwal 239556900, Saudi Arabia