Shape-Persistent Dendrimers

被引:6
作者
Lu, Yao-Chih [1 ]
Anedda, Roberto [2 ]
Lai, Long-Li [1 ]
机构
[1] Natl Chi Nan Univ, Dept Appl Chem, Puli 545, Taiwan
[2] Porto Conte Ric Srl, SP 55 Porto Conte Capo Caccia, Km 8,400,Loc Tramar, I-07041 Alghero, Italy
来源
MOLECULES | 2023年 / 28卷 / 14期
关键词
dendrimer; shape-persistent; void space; sensing; adsorbing; TRIAZINE-BASED DENDRIMER; UNCONVENTIONAL DENDRIMERS; LIQUID-CRYSTALS; CENTRAL LINKER; DESIGN; ADSORPTION; DIVERGENT; DENDRONS; POLYMERS; MESOGENS;
D O I
10.3390/molecules28145546
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Dendrimers have a diverse and versatile morphology, frequently consisting of core, linking, and peripheral moieties. Dendrimers with flexible linkers, such as PAMAM, cannot retain the persistent shape of molecules, and this has been widely explored and reviewed previously; nevertheless, dendrimers with stiff linkers can preserve the persistent shape of the dendrimers, which has been reported considerably less. This review thus focuses on addressing shape-persistent dendrimers with rigid linking moieties discovered in recent years, i.e., from 2012 to 2023. Shape-persistent dendrimers with an interstitial gap between the dendritic frames in the solid state may or may not let the intramolecular void space be accessible for guest molecules, which largely depends on whether their peripheral groups are flexible or non-flexible. In this paper, eight articles on shape-persistent dendrimers with a flexible alkyl periphery, which may exhibit mesogenic phases upon thermal treatment, and eight articles on shape-persistent dendrimers with a non-flexible periphery, which may allow external ions, gases, or volatile organic compounds to access the interstitial gaps between dendritic frames, are reviewed.
引用
收藏
页数:15
相关论文
共 67 条
[1]   Supramolecular design in 2D covalent organic frameworks [J].
Alahakoon, Sampath B. B. ;
Diwakara, Shashini D. D. ;
Thompson, Christina M. M. ;
Smaldone, Ronald A. A. .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (05) :1344-1356
[2]   A dendrimer emitter doped in a dendrimer host: efficient thermally activated delayed fluorescence OLEDs with fully-solution processed organic-layers [J].
Albrecht, K. ;
Matsuoka, K. ;
Fujita, K. ;
Yamamoto, K. .
MATERIALS CHEMISTRY FRONTIERS, 2018, 2 (06) :1097-1103
[3]   Recent advances in dendrimer-based nanoplatform for cancer treatment: A review [J].
Arnbekar, Rushikesh S. ;
Choudhary, Maya ;
Kandasubramanian, Balasubramanian .
EUROPEAN POLYMER JOURNAL, 2020, 126
[4]   Dendritic catalysts and dendrimers in catalysis [J].
Astruc, D ;
Chardac, F .
CHEMICAL REVIEWS, 2001, 101 (09) :2991-3023
[5]   Columnar liquid-crystalline triazine-based dendrimer with carbon nanotube filler for efficient organic lithium-ion batteries [J].
Baskoro, Febri ;
Chiang, Pin-Chieh ;
Lu, Yao-Chih ;
Patricio, Jonathan N. ;
Arco, Susan D. ;
Chen, Hsieh-Chih ;
Kuo, Wen-Shyong ;
Lai, Long-Li ;
Yen, Hung-Ju .
ELECTROCHIMICA ACTA, 2022, 434
[6]   Chromophoric Dendrimer-Based Materials: An Overview of Holistic-Integrated Molecular Systems for Fluorescence Resonance Energy Transfer (FRET) Phenomenon [J].
Bonardd, Sebastian ;
Diaz Diaz, David ;
Leiva, Angel ;
Saldias, Cesar .
POLYMERS, 2021, 13 (24)
[7]  
Caminade AM, 2011, DENDRIMERS: TOWARDS CATALYTIC, MATERIAL AND BIOMEDICAL USES, P1, DOI 10.1002/9781119976530
[8]   Dendrimers for Drug Delivery [J].
Chauhan, Abhay Singh .
MOLECULES, 2018, 23 (04)
[9]   Picolinohydrazide-Based Covalent Organic Polymer for Metal-Free Catalysis and Removal of Heavy Metals from Wastewater [J].
Chowdhury, Additi Roy ;
Maiti, Sayan ;
Mondal, Amita ;
Das, Apurba K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (14) :7835-7843
[10]   Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis [J].
Crooks, RM ;
Zhao, MQ ;
Sun, L ;
Chechik, V ;
Yeung, LK .
ACCOUNTS OF CHEMICAL RESEARCH, 2001, 34 (03) :181-190