Upcycling of plastic wastes and biomass to mechanically robust yet recyclable energy-harvesting materials

被引:26
作者
Huang, Xin [1 ]
Zhou, Bo [1 ]
Sun, Guangya [2 ]
Yang, Xin [1 ]
Wang, Yajun [2 ]
Zhang, Xinxing [1 ]
机构
[1] Sichuan Univ, Polymer Res Inst, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
[2] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
基金
中国国家自然科学基金;
关键词
Upcycling; Mechanically robust; Recyclable; Triboelectric energy harvesting; Carbon footprint; EPOXY;
D O I
10.1016/j.nanoen.2023.108843
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Plastic pollution is a growing global concern. From the perspective of decarbonization throughout entire lifecycle, the development of mechanically robust yet recyclable materials from sustainable building blocks is highly desirable but remains challenging. Here, we propose a supramolecular in situ assembly strategy to fabricate sustainable materials by integrating reclaimed glass fiber fabric (RGFF, from wind turbine blades wastes) and bio-based epoxidized soybean oil (ESO) vitrimer. The key principle of the design is the construction of supramolecular interface with densely aggregated hydrogen bonds between the resin residual on RGFF and ESO vitrimer, which facilitates the in situ assembly process to form a homogeneous and dense cartilage-like interwoven structure. The resulted materials show not only excellent mechanical properties during service (tensile strength of 152.9 MPa and toughness of 33.9 MJ m-3), but also desirable recyclability in terms of end-of-life options. Furthermore, the favorable dielectric modulation (promote 11.6 times in surface potential) allows the materials to be used in efficient and durable triboelectric energy harvesting. This upcycling strategy to integrate plastic wastes with biomass exhibits 44 %-49 % reduction in carbon footprint, opening up an avenue for sustainable materials as promising alternatives to petrochemical plastics.
引用
收藏
页数:11
相关论文
共 48 条
[1]   Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators [J].
Ahmed, Abdelsalam ;
Hassan, Islam ;
Ibn-Mohammed, Taofeeq ;
Mostafa, Hassan ;
Reaney, Ian M. ;
Koh, Lenny S. C. ;
Zu, Jean ;
Wang, Zhong Lin .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (03) :653-671
[2]   Making electronics that don't last [J].
不详 .
NATURE ELECTRONICS, 2022, 5 (08) :479-479
[3]   Upcycling Compact Discs for Flexible and Stretchable Bioelectronic Applications [J].
Brown, Matthew S. ;
Somma, Louis ;
Mendoza, Melissa ;
Noh, Yeonsik ;
Mahler, Gretchen J. ;
Koh, Ahyeon .
NATURE COMMUNICATIONS, 2022, 13 (01)
[4]   Enhanced-performance bio-triboelectric nanogenerator based on starch polymer electrolyte obtained by a cleanroom-free processing method [J].
Ccorahua, Robert ;
Huaroto, Juan ;
Luyo, Clemente ;
Quintana, Maria ;
Vela, Emir A. .
NANO ENERGY, 2019, 59 :610-618
[5]   Construction of Transparent Cellulose-Based Nanocomposite Papers and Potential Application in Flexible Solar Cells [J].
Cheng, Qiaoyun ;
Ye, Dongdong ;
Yang, Weitao ;
Zhang, Shuhua ;
Chen, Hongzheng ;
Chang, Chunyu ;
Zhang, Lina .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (06) :8040-8047
[6]   An overview of solar photovoltaic panels' end-of-life material recycling [J].
Chowdhury, Md Shahariar ;
Rahman, Kazi Sajedur ;
Chowdhury, Tanjia ;
Nuthammachot, Narissara ;
Techato, Kuaanan ;
Akhtaruzzaman, Md ;
Tiong, Sieh Kiong ;
Sopian, Kamaruzzaman ;
Amin, Nowshad .
ENERGY STRATEGY REVIEWS, 2020, 27
[7]   Net-zero emissions energy systems [J].
Davis, Steven J. ;
Lewis, Nathan S. ;
Shaner, Matthew ;
Aggarwal, Sonia ;
Arent, Doug ;
Azevedo, Ines L. ;
Benson, Sally M. ;
Bradley, Thomas ;
Brouwer, Jack ;
Chiang, Yet-Ming ;
Clack, Christopher T. M. ;
Cohen, Armond ;
Doig, Stephen ;
Edmonds, Jae ;
Fennell, Paul ;
Field, Christopher B. ;
Hannegan, Bryan ;
Hodge, Bri-Mathias ;
Hoffert, Martin I. ;
Ingersoll, Eric ;
Jaramillo, Paulina ;
Lackner, Klaus S. ;
Mach, Katharine J. ;
Mastrandrea, Michael ;
Ogden, Joan ;
Peterson, Per F. ;
Sanchez, Daniel L. ;
Sperling, Daniel ;
Stagner, Joseph ;
Trancik, Jessika E. ;
Yang, Chi-Jen ;
Caldeira, Ken .
SCIENCE, 2018, 360 (6396) :1419-+
[8]   Dynamically Cross-Linking Soybean Oil and Low-Molecular-Weight Polylactic Acid toward Mechanically Robust, Degradable, and Recyclable Supramolecular Plastics [J].
Fang, Xu ;
Tian, Nengan ;
Hu, Wenyuan ;
Qing, Yunan ;
Wang, Hao ;
Gao, Xin ;
Qin, Yanguo ;
Sun, Junqi .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (46)
[9]   A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin [J].
Gong, Sheng-Dong ;
Huang, Yun ;
Cao, Hai-Jun ;
Lin, Yuan-Hua ;
Li, Yang ;
Tang, Shui-Hua ;
Wang, Ming-Shan ;
Li, Xing .
JOURNAL OF POWER SOURCES, 2016, 307 :624-633
[10]   Designing Biobased Recyclable Polymers for Plastics [J].
Hatti-Kaul, Rajni ;
Nilsson, Lars J. ;
Zhang, Baozhong ;
Rehnberg, Nicola ;
Lundmark, Stefan .
TRENDS IN BIOTECHNOLOGY, 2020, 38 (01) :50-67