Machine learning emulator for physics-based prediction of ionospheric potential response to solar wind variations
被引:4
作者:
Kataoka, Ryuho
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Polar Res, Tachikawa 1908518, Japan
SOKENDAI, Grad Univ Adv Studies, Hayama, JapanNatl Inst Polar Res, Tachikawa 1908518, Japan
Kataoka, Ryuho
[1
,2
]
Nakano, Shinya
论文数: 0引用数: 0
h-index: 0
机构:
SOKENDAI, Grad Univ Adv Studies, Hayama, Japan
Inst Stat Math, Tachikawa 1908562, Japan
Ctr Data Assimilat Res & Applicat, Joint Support Ctr Data Sci Res, Tachikawa, JapanNatl Inst Polar Res, Tachikawa 1908518, Japan
Nakano, Shinya
[2
,3
,4
]
Fujita, Shigeru
论文数: 0引用数: 0
h-index: 0
机构:
Inst Stat Math, Tachikawa 1908562, Japan
Ctr Data Assimilat Res & Applicat, Joint Support Ctr Data Sci Res, Tachikawa, JapanNatl Inst Polar Res, Tachikawa 1908518, Japan
Fujita, Shigeru
[3
,4
]
机构:
[1] Natl Inst Polar Res, Tachikawa 1908518, Japan
[2] SOKENDAI, Grad Univ Adv Studies, Hayama, Japan
[3] Inst Stat Math, Tachikawa 1908562, Japan
[4] Ctr Data Assimilat Res & Applicat, Joint Support Ctr Data Sci Res, Tachikawa, Japan
Physics-based simulations are important for elucidating the fundamental mechanisms behind the time-varying complex ionospheric conditions, such as ionospheric potential, against unprecedented solar wind variations incident on the Earth's magnetosphere. However, carrying out an extensive parameter survey for comprehending the nonlinear solar wind density dependence of the ionospheric potential, for example, requires state-of-the-art global magnetohydrodynamic (MHD) simulations, which cannot be executed efficiently even on large-scale cluster computers. Here, we report the performance of a machine-learning based surrogate model for estimating the ionospheric potential outputs of a global MHD simulation, using the reservoir computing technique called echo state network (ESN). The trained ESN-based emulator demonstrates exceptional speed in conducting the parameter survey, which can lead to the identification of a solar wind density dependence of the ionospheric polar cap potential. Finally, we discuss future directions including the promising application for space weather forecasting.
机构:
Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USANatl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA
Cousins, E. D. P.
;
Matsuo, Tomoko
论文数: 0引用数: 0
h-index: 0
机构:
Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
NOAA, Space Weather Predict Ctr, Boulder, CO USANatl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA
Matsuo, Tomoko
;
Richmond, A. D.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USANatl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA
Richmond, A. D.
;
Anderson, B. J.
论文数: 0引用数: 0
h-index: 0
机构:
Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USANatl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA
机构:
Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USANatl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA
Cousins, E. D. P.
;
Matsuo, Tomoko
论文数: 0引用数: 0
h-index: 0
机构:
Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
NOAA, Space Weather Predict Ctr, Boulder, CO USANatl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA
Matsuo, Tomoko
;
Richmond, A. D.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USANatl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA
Richmond, A. D.
;
Anderson, B. J.
论文数: 0引用数: 0
h-index: 0
机构:
Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USANatl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA