Generative Adversarial Networks applied to synthetic financial scenarios generation

被引:2
|
作者
Rizzato, Matteo [1 ]
Wallart, Julien [2 ]
Geissler, Christophe [1 ]
Morizet, Nicolas [1 ]
Boumlaik, Noureddine [1 ]
机构
[1] Advestis, 69 Blvd Haussmann, F-75008 Paris, France
[2] Cameleon Software, 185 Rue Galilee, F-31670 Labege, France
关键词
Deep neural networks; Generative Adversarial Networks; Conditional data augmentation; Financial scenarios; Risk management; Time series generation; MONTE-CARLO METHODS; MARKOV-CHAIN; BOOTSTRAP;
D O I
10.1016/j.physa.2023.128899
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we introduce Jinkou, a GAN-based algorithm that allows for the conditional generation of synthetic multivariate time series. The set of variables whose distribution is to be replicated include specific variables taking different values for different objects, as well state variables describing the state of the world, common to all objects at a given date and potentially influential on the specific features. The conditioning process is specified at inference time, and only involves state variables; it simply consists in setting lower and/or upper bounds on their values. The generative model is trained as an un-conditioned generator and is agnostic of any scenario the user might set at inference time. The use case considered in this pilot study is of interest for the financial industry: the generator produces random samples of the instrument-specific features over time (e.g their price, size or the risk for securities). Such generation is conditioned on user-defined macroeconomic assumptions/scenarios involving global variables, such as inflation, oil prices or interest rates. We introduce numerical metrics to assess the statistical closeness between the two multivariate distributions of historical and artificial data. As proof of concept, we test the proposed algorithm by reproducing the value variation for two possible portfolios, Energy and Financial, conditioned on scenarios for which a consensus is present in the community. Jinkou allows us to recover some classical stylized facts about the financial markets, this ability constituting a proof of its efficiency.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Review of Generative Adversarial Networks in Image Generation
    Chi, Wanle
    Choo, Yun Huoy
    Goh, Ong Sing
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2022, 26 (01) : 3 - 7
  • [32] Icon Generation Based on Generative Adversarial Networks
    Yang, Hongyi
    Xue, Chengqi
    Yang, Xiaoying
    Yang, Han
    APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [33] Emotional Dialogue Generation with Generative Adversarial Networks
    Li, Yun
    Wu, Bin
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 868 - 873
  • [34] Game Character Generation with Generative Adversarial Networks
    Emekligil, Ferda Gul Aydin
    Oksuz, Ilkay
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [35] Question Generation via Generative Adversarial Networks
    Liu, Dong
    Hong, Yu
    Yao, Jianmin
    Zhou, Guodong
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [36] Generative Adversarial Networks in Image Generation and Recognition
    Popuri, Anoushka
    Miller, John
    2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023, 2023, : 1294 - 1297
  • [37] Tympanic Membrane Generation with Generative Adversarial Networks
    Eseoglu, Mustafa Furkan
    Karsligil, M. Elif
    Kocak, Ismail
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [38] Generative Adversarial Networks for Face Generation: A Survey
    Kammoun, Amina
    Slama, Rim
    Tabia, Hedi
    Ouni, Tarek
    Abid, Mohmed
    ACM COMPUTING SURVEYS, 2023, 55 (05)
  • [39] Geophysical model generation with generative adversarial networks
    Vladimir Puzyrev
    Tristan Salles
    Greg Surma
    Chris Elders
    Geoscience Letters, 9
  • [40] Leveraging Quantum computing for synthetic image generation and recognition with Generative Adversarial Networks and Convolutional Neural Networks
    Golchha R.
    Verma G.K.
    International Journal of Information Technology, 2024, 16 (5) : 3149 - 3162