Insights into the mechanisms of neuron generation and specification in the zebrafish ventral spinal cord

被引:0
|
作者
Cucun, Gokhan [1 ]
Koehler, Melina [1 ]
Pfitsch, Sabrina [1 ]
Rastegar, Sepand [1 ,2 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Biol & Chem Syst Biol Informat Proc IBCS BIP, Eggenstein Leopoldshafen, Germany
[2] Karlsruhe Inst Technol KIT, Inst Biol & Chem Syst Biol Informat Proc IBCS BIP, Campus Nord Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
关键词
central nervous system; lateral floor plate; neurons; patterning; progenitor domain; specification; spinal cord; V2; domain; zebrafish; FLUID-CONTACTING NEURONS; LATERAL FLOOR PLATE; SONIC-HEDGEHOG; SEROTONERGIC NEURONS; TRYPTOPHAN-HYDROXYLASE; LOCOMOTOR RHYTHM; V2B INTERNEURONS; NOTCH; CELLS; PATTERN;
D O I
10.1111/febs.16913
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The vertebrate nervous system is composed of a wide range of neurons and complex synaptic connections, raising the intriguing question of how neuronal diversity is generated. The spinal cord provides an excellent model for exploring the mechanisms governing neuronal diversity due to its simple neural network and the conserved molecular processes involved in neuron formation and specification during evolution. This review specifically examines two distinct progenitor domains present in the zebrafish ventral spinal cord: the lateral floor plate (LFP) and the p2 progenitor domain. The LFP is responsible for the production of GABAergic Kolmer-Agduhr neurons (KA & DPRIME;), glutamatergic V3 neurons, and intraspinal serotonergic neurons, while the p2 domain generates V2 precursors that subsequently differentiate into three unique subpopulations of V2 neurons, namely glutamatergic V2a, GABAergic V2b, and glycinergic V2s. Based on recent findings, we will examine the fundamental signaling pathways and transcription factors that play a key role in the specification of these diverse neurons and neuronal subtypes derived from the LFP and p2 progenitor domains.
引用
收藏
页码:646 / 662
页数:17
相关论文
共 50 条
  • [41] A direct requirement for Hedgehog signaling for normal specification of all ventral progenitor domains in the presumptive mammalian spinal cord
    Wijgerde, M
    McMahon, JA
    Rule, M
    McMahon, AP
    GENES & DEVELOPMENT, 2002, 16 (22) : 2849 - 2864
  • [42] Glia to neuron ratio in the posterior aspect of the human spinal cord at thoracic segments relevant to spinal cord stimulation
    Ruiz-Sauri, Amparo
    Orduna-Valls, Jorge M.
    Blasco-Serra, Arantxa
    Tornero-Tornero, Carlos
    Cedeno, David L.
    Bejarano-Quisoboni, Daniel
    Valverde-Navarro, Alfonso A.
    Benyamin, Ramsin
    Vallejo, Ricardo
    JOURNAL OF ANATOMY, 2019, 235 (05) : 997 - 1006
  • [43] Keratan Sulfate Regulates the Switch from Motor Neuron to Oligodendrocyte Generation During Development of the Mouse Spinal Cord
    Hashimoto, Hirokazu
    Ishino, Yugo
    Jiang, Wen
    Yoshimura, Takeshi
    Takeda-Uchimura, Yoshiko
    Uchimura, Kenji
    Kadomatsu, Kenji
    Ikenaka, Kazuhiro
    NEUROCHEMICAL RESEARCH, 2016, 41 (1-2) : 450 - 462
  • [44] Spinal cord injury in zebrafish induced by near-infrared femtosecond laser pulses
    Ellstrom, Ivar Dehnisch
    Spulber, Stefan
    Hultin, Sara
    Norlin, Nils
    Ceccatelli, Sandra
    Hultling, Claes
    Uhlen, Per
    JOURNAL OF NEUROSCIENCE METHODS, 2019, 311 : 259 - 266
  • [45] Lesion-induced generation of interneuron cell types in specific dorsoventral domains in the spinal cord of adult zebrafish
    Kuscha, Veronika
    Frazer, Sarah L.
    Dias, Tatyana B.
    Hibi, Masahiko
    Becker, Thomas
    Becker, Catherina G.
    JOURNAL OF COMPARATIVE NEUROLOGY, 2012, 520 (16) : 3604 - 3616
  • [46] In toto imaging of glial JNK signaling during larval zebrafish spinal cord regeneration
    Becker, Clayton J.
    Cigliola, Valentina
    Gillotay, Pierre
    Rich, Ashley
    De Simone, Alessandro
    Han, Yanchao
    Di Talia, Stefano
    Poss, Kenneth D.
    DEVELOPMENT, 2023, 150 (24):
  • [47] Zebrafish spinal cord oligodendrocyte formation requires boc function
    Kearns, Christina A.
    Walker, Macie
    Ravanelli, Andrew M.
    Scott, Kayt
    Arzbecker, Madeline R.
    Appel, Bruce
    GENETICS, 2021, 218 (04)
  • [48] Specification and maintenance of the spinal cord stem zone
    Delfino-Machín, M
    Lunn, JS
    Breitkreuz, DN
    Akai, J
    Storey, KG
    DEVELOPMENT, 2005, 132 (19): : 4273 - 4283
  • [49] Eph/Ephrin Signaling Controls Progenitor Identities In The Ventral Spinal Cord
    Laussu, Julien
    Audouard, Christophe
    Kischel, Anthony
    Assis-Nascimento, Poincyane
    Escalas, Nathalie
    Liebl, Daniel J.
    Soula, Cathy
    Davy, Alice
    NEURAL DEVELOPMENT, 2017, 12
  • [50] Aluminum in motor neuron disease spinal cord
    Deibel, MA
    Ehmann, WD
    Candy, JM
    Ince, PG
    Shaw, PJ
    Markesbery, WR
    TRACE ELEMENTS AND ELECTROLYTES, 1997, 14 (01): : 51 - 54