Projection and Analysis of Floods in the Upper Heihe River Basin under Climate Change

被引:5
|
作者
Ye, Yingtao [1 ,2 ]
Li, Zhanling [1 ,2 ,3 ]
Li, Xintong [1 ,2 ]
Li, Zhanjie [4 ]
机构
[1] China Univ Geosci Beijing, Sch Water Resources & Environm, Beijing 100083, Peoples R China
[2] MOE Key Lab Groundwater Circulat & Environm Evolut, Beijing 100083, Peoples R China
[3] Nanjing Hydraul Res Inst, State Key Lab Hydrol Water Resources & Hydraul Eng, Nanjing 210029, Peoples R China
[4] Beijing Normal Univ, Coll Water Sci, Beijing 100875, Peoples R China
关键词
climate change; Heihe River basin; hydrological projection; flood; LAND-USE CHANGE; UNCERTAINTY; PRECIPITATION; CATCHMENT; EXTREMES; RAINFALL; SCENARIO; IMPACTS; RUNOFF;
D O I
10.3390/atmos14071083
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The projection of future hydrological processes can provide insights into the risks associated with potential hydrological events in a changing environment and help develop strategies to cope with and prevent them. The Heihe River basin in Northwest China is crucial for providing water resources to water-scarce regions. Thus, understanding the future runoff trends in the context of climate change can optimize water allocation, alleviate water shortages, and mitigate flood risks in the region. In this study, we use meteorological data from 10 general circulation models under two future scenarios to drive the Soil and Water Assessment Tool (SWAT) model and project hydrological processes in the upper Heihe River basin from 2026 to 2100. After examining the future changes in total runoff in the basin, we assess the magnitude, frequency, and timing of daily flood events in the future. The results of the multi-model ensemble averaging (MMEA) method show that the change in the multi-year average annual runoff is -4.5% (2026-2050), -1.8% (2051-2075), and +2.0% (2076-2100) under the SSP245 scenario and -1.0% (2026-2050), +0.4% (2051-2075), and +0.2% (2076-2100) under the SSP585 scenario compared to the historical period. The analysis of flood magnitudes indicates that the basin will experience higher-magnitude floods in the future, with the largest increase rates of 61.9% and 66.4% for the 1-day maximum flows under the SSP245 and SSP585 scenarios, respectively. The flood return period is projected to be shorter in the future, and the 1-day maximum flows of a 100-year flood are expected to increase by 44.7% and 63.7% under the SSP245 and SSP585 scenarios, respectively. Furthermore, a significant shift in the flood timing is expected, with the highest frequency moving from July to August, representing a one-month lag compared to the historical period. Our findings suggest that the hydrological characteristics of the upper Heihe River basin may be significantly altered in the future due to the effects of climate change, resulting in floods with higher magnitudes and frequencies and different timings. Therefore, it is imperative to consider these changes carefully when developing risk prevention measures.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Assessment and projection of ground freezing-thawing responses to climate change in the Upper Heihe River Basin, Northwest China
    Hu, Jingyi
    Wu, Yiping
    Zhao, Wenzhi
    Wang, Fan
    Zhang, Guangchuang
    Qiu, Linjing
    Hui, Jinyu
    Yin, Xiaowei
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2022, 42
  • [2] Land Use and Climate Change Effects on Surface Runoff Variations in the Upper Heihe River Basin
    Shang, Xingxing
    Jiang, Xiaohui
    Jia, Ruining
    Wei, Chen
    WATER, 2019, 11 (02):
  • [3] Responses of Runoff and Its Extremes to Climate Change in the Upper Catchment of the Heihe River Basin, China
    Li, Zhanling
    Li, Wen
    Li, Zhanjie
    Lv, Xiaoyu
    ATMOSPHERE, 2023, 14 (03)
  • [4] Evolutionary trends of drought under climate change in the Heihe River basin, Northwest China
    Feng, Jing
    Yan, Denghua
    Li, Chuanzhe
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2013, 11 (01): : 1025 - 1031
  • [5] Impacts of Climate Change on Runoff in the Heihe River Basin, China
    Liu, Qin
    Cheng, Peng
    Lyu, Meixia
    Yan, Xinyang
    Xiao, Qingping
    Li, Xiaoqin
    Wang, Lei
    Bao, Lili
    ATMOSPHERE, 2024, 15 (05)
  • [6] Impacts of projected climate change on runoff in upper reach of Heihe River basin using climate elasticity method and GCMs
    Li, Zhanling
    Li, Qiuju
    Wang, Jie
    Feng, Yaru
    Shao, Quanxi
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 716
  • [7] Impact of climate change and variability on water resources in Heihe River Basin
    ZHANG Jishi 1
    2. Lanzhou University
    JournalofGeographicalSciences, 2003, (03) : 32 - 38
  • [8] Impacts of climate change on water resources in Heihe River Basin, in China
    Feng, J.
    Yan, D. H.
    Li, C. Z.
    Gao, Y.
    Wang, Q.
    MANUFACTURE ENGINEERING AND ENVIRONMENT ENGINEERING, VOLS 1 AND 2, 2014, 84 : 1505 - 1512
  • [9] Impact of climate change and variability on water resources in heihe River Basin
    Zhang Jishi
    Kang Ersi
    Lan Yongchao
    Chen Rensheng
    Journal of Geographical Sciences, 2003, 13 (3) : 286 - 292
  • [10] Spatiotemporal analysis of precipitation trends under climate change in the upper reach of Mekong River basin
    Wu, Feifei
    Wang, Xuan
    Cai, Yanpeng
    Li, Chunhui
    QUATERNARY INTERNATIONAL, 2016, 392 : 137 - 146