A computational study of CO2 hydrogenation on single atoms of Pt, Pd, Ni and Rh on In2O3(111)

被引:4
|
作者
Cannizzaro, Francesco [1 ]
Kurstjens, Sjoerd [1 ]
van den Berg, Tom [1 ]
Hensen, Emiel J. M. [1 ]
Filot, Ivo A. W. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Chem Engn & Chem, Lab Inorgan Mat & Catalysis, NL-5600 MB Eindhoven, Netherlands
关键词
METHANOL SYNTHESIS; CATALYTIC CYCLES; MODEL; TRANSITION; ADSORPTION; CONVERSION; SURFACES; SITE; GAS; DFT;
D O I
10.1039/d3cy00222e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal promoted indium oxide (In2O3) catalysts are promising materials for CO2 hydrogenation to products such as methanol and carbon monoxide. The influence of the dispersion of the promoting metal on the methanol selectivity of In2O3 catalysts is a matter of debate, which centers around the role of atomically dispersed single metal atoms vs. metal clusters as catalysts for methanol formation. In this study, we used density functional theory calculations to compare the role of single atoms (SAs) of Ni, Pd, Pt and Rh placed on the In2O3(111) surface to study CO2 hydrogenation to CO and methanol. Direct and hydrogen-assisted CO2 dissociation pathways leading to CO as well as methanol formation via either formate or CO intermediates are explicitly considered. Microkinetic simulations show that all SA models mainly catalyze CO formation via a redox pathway involving oxygen vacancies where adsorbed CO2 dissociates followed by CO desorption and water formation. The higher barriers for hydrogenation of formate intermediates compared to the overall barrier for the rWGS reaction explain the negligible CH3OH selectivity.
引用
收藏
页码:4701 / 4715
页数:15
相关论文
共 50 条
  • [1] The Promoting Role of Ni on In2O3 for CO2 Hydrogenation to Methanol
    Cannizzaro, Francesco
    Hensen, Emiel J. M.
    Filot, Ivo A. W.
    ACS CATALYSIS, 2023, 13 (03) : 1875 - 1892
  • [2] Pt-Promoted In2O3 Reduction and Reconstruction at the Pt/In2O3 Interface in CO2 Hydrogenation Atmosphere
    Lu, Ruichen
    Zhang, Xianze
    Li, Shuang-Shuang
    Wang, Yingjie
    Song, Tinglu
    Zhu, Tong
    Zhang, Hui
    Zheng, Renkui
    Zhang, Xueqiang
    CHEMCATCHEM, 2023, 15 (11)
  • [3] CO2 hydrogenation to methanol over Pd/MnO/In2O3 catalyst
    Tian, Guanfeng
    Wu, Youqing
    Wu, Shiyong
    Huang, Sheng
    Gao, Jinsheng
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (01):
  • [4] CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy
    Rui, Ning
    Wang, Zongyuan
    Sun, Kaihang
    Ye, Jingyun
    Ge, Qingfeng
    Liu, Chang-jun
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 218 : 488 - 497
  • [5] DFT Study of CO2 Adsorption and Hydrogenation on the In2O3 Surface
    Ye, Jingyun
    Liu, Changjun
    Ge, Qingfeng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (14) : 7817 - 7825
  • [6] Revealing the effect of metal-support interactions at the Ni/In2O3(111) interface on the selective CO2 hydrogenation
    Ding, Yishui
    Chen, Jie
    Lian, Xu
    Tian, Zhangliu
    Geng, Xiangrui
    Wang, Yihe
    Liu, Yuan
    Wang, Wei
    Wang, Meng
    Xiao, Yukun
    Jin, Tengyu
    Sun, Mingyue
    Yang, Zhenni
    Zhang, Kelvin H. L.
    Zhong, Jian-Qiang
    Chen, Wei
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 343
  • [7] Optimal design of PdAu/In2O3 catalysts for CO2 hydrogenation
    Xu, Xingtang
    Li, Yanwei
    Sun, Guang
    Cao, Jianliang
    Wang, Yan
    Xu, Wenjuan
    AIP ADVANCES, 2024, 14 (10)
  • [8] Theoretical study on CO2 hydrogenation on In2O3(111) supported single-atom catalysts: Horiuti-polanyi versus non-horiuti-polanyi mechanism
    Li, Xiang
    Fu, Gang
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2025, 38 (01) : 54 - 62
  • [9] Effects of oxygen vacancy formation energy and Pt doping on the CO2 hydrogenation activity of In2O3 catalysts
    Wei, Zhangqian
    Bao, Yuanjie
    Wang, Yuchen
    Li, Shenggang
    CATALYSIS SCIENCE & TECHNOLOGY, 2025, 15 (05) : 1538 - 1546
  • [10] Understanding the structure-performance relationship of cubic In2O3 catalysts for CO2 hydrogenation
    Qin, Bin
    Zhou, Zhimin
    Li, Shenggang
    Gao, Peng
    JOURNAL OF CO2 UTILIZATION, 2021, 49