Quantifying uncertainty in inferences of landscape genetic resistance due to choice of individual-based genetic distance metric

被引:10
|
作者
Beninde, Joscha [1 ,2 ]
Wittische, Julian [3 ,4 ]
Frantz, Alain C. [3 ,4 ,5 ]
机构
[1] Univ Calif Los Angeles, Inst Environm & Sustainabil, LA Kretz Ctr Calif Conservat Sci, Los Angeles, CA 90095 USA
[2] IUCN WCPA Connect Conservat Specialist Grp, Gland, Switzerland
[3] Musee Natl dHist Nat, Luxembourg, Luxembourg
[4] Fdn Faune Flore, Luxembourg, Luxembourg
[5] Univ Sheffield, Sheffield, England
关键词
comparative landscape genetics; connectivity; corridor; current flow; fragmentation; multiple-path analysis; PAIRWISE RELATEDNESS; MULTIVARIATE-ANALYSIS; CERVUS-ELAPHUS; R-PACKAGE; POPULATION; DIFFERENTIATION; CLUSTERS; FLOW;
D O I
10.1111/1755-0998.13831
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Estimates of gene flow resulting from landscape resistance inferences frequently inform conservation management decision-making processes. Therefore, results must be robust across approaches and reflect real-world gene flow instead of methodological artefacts. Here, we tested the impact of 32 individual-based genetic distance metrics on the robustness and accuracy of landscape resistance modelling results. We analysed three empirical microsatellite datasets and 36 simulated datasets that varied in landscape resistance and genetic spatial autocorrelation. We used ResistanceGA to generate optimised multi-feature resistance surfaces for each of these datasets using 32 different genetic distance metrics. Results of the empirical dataset demonstrated that the choice of genetic distance metric can have strong impacts on inferred optimised resistance surfaces. Simulations showed accurate parametrisation of resistance surfaces across most genetic distance metrics only when a small number of environmental features was impacting gene flow. Landscape scenarios with many features impacting gene flow led to a generally poor recovery of true resistance surfaces. Simulation results also emphasise that choosing a genetic distance metric should not be based on marginal R-2-based model fit. Until more robust methods are available, resistance surfaces can be optimised with different genetic distance metrics and the convergence of results needs to be assessed via pairwise matrix correlations. Based on the results presented here, high correlation coefficients across different genetic distance categories likely indicate accurate inference of true landscape resistance. Most importantly, empirical results should be interpreted with great caution, especially when they appear counter-intuitive in light of the ecology of a species.
引用
收藏
页数:18
相关论文
共 15 条
  • [1] A comparison of individual-based genetic distance metrics for landscape genetics
    Shirk, A. J.
    Landguth, E. L.
    Cushman, S. A.
    MOLECULAR ECOLOGY RESOURCES, 2017, 17 (06) : 1308 - 1317
  • [2] A comparison of regression methods for model selection in individual-based landscape genetic analysis
    Shirk, Andrew J.
    Landguth, Erin L.
    Cushman, Samuel A.
    MOLECULAR ECOLOGY RESOURCES, 2018, 18 (01) : 55 - 67
  • [3] Robustness of resistance surface optimisations: sampling schemes and genetic distance metrics affect inferences in landscape genetics
    Schleimer, Anna
    Luttringer, Amanda
    Wittische, Julian
    Drygala, Frank
    Proess, Roland
    Cantu-Salazar, Lisette
    Frantz, Alain C.
    LANDSCAPE ECOLOGY, 2023, 38 (11) : 2861 - 2883
  • [4] Robustness of resistance surface optimisations: sampling schemes and genetic distance metrics affect inferences in landscape genetics
    Anna Schleimer
    Amanda Luttringer
    Julian Wittische
    Frank Drygala
    Roland Proess
    Lisette Cantú-Salazar
    Alain C. Frantz
    Landscape Ecology, 2023, 38 : 2861 - 2883
  • [5] Landscape resistance affects individual habitat selection but not genetic relatedness in a reintroduced desert ungulate
    Zecherle, L. J.
    Bar-David, S.
    Nichols, H. J.
    Templeton, A. R.
    Hipperson, H.
    Horsburgh, G. J.
    Brown, R. P.
    BIOLOGICAL CONSERVATION, 2020, 252
  • [6] Relationships between migration rates and landscape resistance assessed using individual-based simulations
    Landguth, E. L.
    Cushman, S. A.
    Murphy, M. A.
    Luikart, G.
    MOLECULAR ECOLOGY RESOURCES, 2010, 10 (05) : 854 - 862
  • [7] Genetic Rescue of the Dinaric Lynx Population: Insights for Conservation From Genetic Monitoring and Individual-Based Modelling
    Pazhenkova, Elena
    Bartol, Matej
    Boljte, Barbara
    Flezar, Ursa
    Gazzola, Andrea
    Gomercic, Tomislav
    Konec, Marjeta
    Kos, Ivan
    Krofel, Miha
    Kubala, Jakub
    Paule, Ladislav
    Pop, Mihai
    Potocnik, Hubert
    Promberger, Barbara
    Rigg, Robin
    Sin, Teodora
    Sindicic, Magda
    Slijepcevic, Vedran
    Stronen, Astrid Vik
    Toplicanec, Ira
    Skrbinsek, Tomaz
    EVOLUTIONARY APPLICATIONS, 2025, 18 (01):
  • [8] Detecting black bear source-sink dynamics using individual-based genetic graphs
    Draheim, Hope M.
    Moore, Jennifer A.
    Etter, Dwayne
    Winterstein, Scott R.
    Scribner, Kim T.
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2016, 283 (1835)
  • [9] Individual-based genetic analyses support asexual hydrochory dispersal in Zostera noltei
    Berkovic, Buga
    Coelho, Nelson
    Gouveia, Licinia
    Serrao, Ester A.
    Alberto, Filipe
    PLOS ONE, 2018, 13 (08):
  • [10] Dealing with uncertainty in landscape genetic resistance models: a case of three co-occurring marsupials
    Dudaniec, Rachael Y.
    Wilmer, Jessica Worthington
    Hanson, Jeffrey O.
    Warren, Matthew
    Bell, Sarah
    Rhodes, Jonathan R.
    MOLECULAR ECOLOGY, 2016, 25 (02) : 470 - 486