Lung Parenchyma Segmentation from CT Images with a Fully Automatic Method

被引:4
作者
Moghaddam, Reza Mousavi [1 ]
Aghazadeh, Nasser [1 ,2 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Appl Math, Image Proc Lab, Tabriz, Iran
[2] Izmir Inst Technol, Dept Math, Izmir, Turkiye
关键词
Lung Parenchyma Segmentation; Juxtapleural Nodule; Chest CT Slice; PROBABILISTIC ATLAS; COMPUTED-TOMOGRAPHY; U-NET; NODULES; ALGORITHM; MODEL;
D O I
10.1007/s11042-023-16040-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For the last three years, the world has been facing an infectious disease that primarily affects the human breathing organ. The disease has caused many deaths worldwide so far and has imposed high economic costs on all countries. Therefore, attention to computer-aided detection/diagnosis (CAD) systems to help diagnose and treat diseases related to the human respiratory system should be given more attention so that countries' health systems can treat patients in epidemics. Considering the importance of CAD systems, we proposed a two-step automatic algorithm. In the first step, we obtain the primary boundary of the lobes in CT lung scan images with the help of some conventional image processing tools. In the second stage, we obtained a more precise boundary of the lung lobes by correcting the unusual dimples and valleys (which are sometimes caused by the presence of juxtapleural nodules). This proposed method has low implementation time. Given that a precise boundary of the pulmonary lobes is essential in the more accurate diagnosis of lung-related diseases, an attempt has been made to ensure that the final segmentation of the lung parenchyma has an acceptable score in terms of evaluation criteria so that the proposed algorithm can be used in the diagnosis procedure.
引用
收藏
页码:14235 / 14257
页数:23
相关论文
共 40 条
[1]   Lung CT Image Segmentation Using Deep Neural Networks [J].
Ait Skourt, Brahim ;
El Hassani, Abdelhamid ;
Majda, Aicha .
PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS2017), 2018, 127 :109-113
[2]   A novel framework for rapid diagnosis of COVID-19 on computed tomography scans [J].
Akram, Tallha ;
Attique, Muhammad ;
Gul, Salma ;
Shahzad, Aamir ;
Altaf, Muhammad ;
Naqvi, S. Syed Rameez ;
Damasevicius, Robertas ;
Maskeliunas, Rytis .
PATTERN ANALYSIS AND APPLICATIONS, 2021, 24 (03) :951-964
[3]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[4]   Automatic Segmentation of Organs-at-Risk in Thoracic Computed Tomography Images Using Ensembled U-Net InceptionV3 Model [J].
Ashok, Malvika ;
Gupta, Abhishek .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2023, 30 (03) :346-362
[5]  
Campadelli P., 2009, ELECT LETT COMPUTER, V8, P1
[6]   A segmentation framework for abdominal organs from CT scans [J].
Campadelli, Paola ;
Casiraghi, Elena ;
Pratissoli, Stella .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2010, 50 (01) :3-11
[7]  
Carmo Diedre, 2022, Yearb Med Inform, V31, P277, DOI 10.1055/s-0042-1742517
[8]   A fractional order derivative based active contour model for inhomogeneous image segmentation [J].
Chen, Bo ;
Huang, Shan ;
Liang, Zhengrong ;
Chen, Wensheng ;
Pan, Binbin .
APPLIED MATHEMATICAL MODELLING, 2019, 65 :120-136
[9]   Low order adaptive region growing for lung segmentation on plain chest radiographs [J].
Chondro, Peter ;
Yao, Chih-Yuan ;
Ruan, Shanq-Jang ;
Chien, Li-Chien .
NEUROCOMPUTING, 2018, 275 :1002-1011
[10]   Automatic COVID-19 detection from X-ray images using ensemble learning with convolutional neural network [J].
Das, Amit Kumar ;
Ghosh, Sayantani ;
Thunder, Samiruddin ;
Dutta, Rohit ;
Agarwal, Sachin ;
Chakrabarti, Amlan .
PATTERN ANALYSIS AND APPLICATIONS, 2021, 24 (03) :1111-1124