SPARSE AND LOW-RANK MATRIX QUANTILE ESTIMATION WITH APPLICATION TO QUADRATIC REGRESSION

被引:7
|
作者
Lu, Wenqi [1 ,2 ]
Zhu, Zhongyi [1 ]
Lian, Heng [2 ,3 ,4 ]
机构
[1] Nankai Univ, Sch Stat & Data Sci, Tianjin, Peoples R China
[2] Fudan Univ, Sch Management, Shanghai 200433, Peoples R China
[3] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[4] CityU Shenzhen Res Inst, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Dual norm; interaction effects; matrix regression; penalization; VARIABLE SELECTION; PENALIZATION; COMPLETION; ALGORITHM;
D O I
10.5705/ss.202021.0140
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This study examines matrix quantile regression where the covariate is a matrix and the response is a scalar. Although the statistical estimation of ma-trix regression is an active field of research, few studies examine quantile regression with matrix covariates. We propose an estimation procedure based on convex reg-ularizations in a high-dimensional setting. In order to reduce the dimensionality, the coefficient matrix is assumed to be low rank and/or sparse. Thus, we impose two regularizers to encourage different low-dimensional structures. We develop the asymptotic properties and an implementation based on the incremental proximal gradient algorithm. We then apply the proposed estimator to quadratic quantile regression, and demonstrate its advantages using simulations and a real-data analysis.
引用
收藏
页码:945 / 959
页数:15
相关论文
共 50 条
  • [41] LOW-RANK, SPARSE MATRIX DECOMPOSITION AND GROUP SPARSE CODING FOR IMAGE CLASSIFICATION
    Zhang, Lihe
    Ma, Chen
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 669 - 672
  • [42] A Sparse and Low-Rank Matrix Recovery Model for Saliency Detection
    Wang, Chao
    Li, Jing
    Li, KeXin
    Zhuang, Yi
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2018, 2018, 11323 : 129 - 139
  • [43] EFFICIENT BACKGROUND SUBTRACTION WITH LOW-RANK AND SPARSE MATRIX DECOMPOSITION
    Ebadi, Salehe Erfanian
    Ones, Valia Guerra
    Izquierdo, Ebroul
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4863 - 4867
  • [44] Iteratively reweighted accurate sparse low-rank matrix estimation algorithm for bearing fault diagnosis
    Huang, Weiguo
    Ma, Juntao
    Qiu, Tianxu
    Liao, Yi
    Mao, Lei
    Ding, Chuancang
    Wang, Jun
    Shi, Juanjuan
    MEASUREMENT, 2024, 225
  • [45] Sparse abundance estimation with low-rank reconstruction for hyperspectral unmixing
    Xu, Yingying
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (17) : 6805 - 6830
  • [46] Sparse and Low-Rank Tensor Estimation via Cubic Sketchings
    Hao, Botao
    Zhang, Anru
    Cheng, Guang
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (09) : 5927 - 5964
  • [47] Noncoherent Sparse Subarrays for DOA Estimation Based on Low-Rank and Sparse Recovery
    Leite, Wesley S.
    De Lamare, Rodrigo C.
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1751 - 1755
  • [48] Sparse and Low-rank Tensor Estimation via Cubic Sketchings
    Hao, Botao
    Zhang, Anru
    Cheng, Guang
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 1319 - 1329
  • [49] Nonlocal Sparse and Low-Rank Regularization for Optical Flow Estimation
    Dong, Weisheng
    Shi, Guangming
    Hu, Xiaocheng
    Ma, Yi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (10) : 4527 - 4538
  • [50] Low-rank and sparse matrices fitting algorithm for low-rank representation
    Zhao, Jianxi
    Zhao, Lina
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (02) : 407 - 425