SPARSE AND LOW-RANK MATRIX QUANTILE ESTIMATION WITH APPLICATION TO QUADRATIC REGRESSION

被引:7
|
作者
Lu, Wenqi [1 ,2 ]
Zhu, Zhongyi [1 ]
Lian, Heng [2 ,3 ,4 ]
机构
[1] Nankai Univ, Sch Stat & Data Sci, Tianjin, Peoples R China
[2] Fudan Univ, Sch Management, Shanghai 200433, Peoples R China
[3] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[4] CityU Shenzhen Res Inst, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Dual norm; interaction effects; matrix regression; penalization; VARIABLE SELECTION; PENALIZATION; COMPLETION; ALGORITHM;
D O I
10.5705/ss.202021.0140
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This study examines matrix quantile regression where the covariate is a matrix and the response is a scalar. Although the statistical estimation of ma-trix regression is an active field of research, few studies examine quantile regression with matrix covariates. We propose an estimation procedure based on convex reg-ularizations in a high-dimensional setting. In order to reduce the dimensionality, the coefficient matrix is assumed to be low rank and/or sparse. Thus, we impose two regularizers to encourage different low-dimensional structures. We develop the asymptotic properties and an implementation based on the incremental proximal gradient algorithm. We then apply the proposed estimator to quadratic quantile regression, and demonstrate its advantages using simulations and a real-data analysis.
引用
收藏
页码:945 / 959
页数:15
相关论文
共 50 条
  • [21] Low-rank and sparse matrix decomposition with background position estimation for hyperspectral anomaly detection
    Yang, Yixin
    Zhang, Jianqi
    Liu, Delian
    Wu, Xin
    INFRARED PHYSICS & TECHNOLOGY, 2019, 96 : 213 - 227
  • [22] Analysis of VB Factorizations for Sparse and Low-Rank Estimation
    Wipf, David
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [23] Sparse Low-Rank Matrix Estimation With Nonconvex Enhancement for Fault Diagnosis of Rolling Bearings
    Ma, Juntao
    Huang, Weiguo
    Liao, Yi
    Jiang, Xingxing
    Ding, Chuancang
    Wang, Jun
    Shi, Juanjuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [24] DOA Estimation in Partially Correlated Noise Using Low-Rank/Sparse Matrix Decomposition
    Malek-Mohammadi, Mohammadreza
    Jansson, Magnus
    Owrang, Arash
    Koochakzadeh, Ali
    Babaie-Zadeh, Massoud
    2014 IEEE 8TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2014, : 373 - 376
  • [25] LOW-RANK TOEPLITZ MATRIX ESTIMATION VIA RANDOM ULTRA-SPARSE RULERS
    Lawrence, Hannah
    Li, Jerry
    Musco, Cameron
    Musco, Christopher
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4796 - 4800
  • [26] Sparse and low-rank abundance estimation with structural information
    Yuan Jing
    Zhang Yu-Jin
    Yang De-He
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2018, 37 (02) : 144 - 153
  • [27] Sparse and low-rank abundance estimation with internal variability
    Yuan J.
    Zhang Y.
    Yaogan Xuebao/Journal of Remote Sensing, 2019, 23 (04): : 630 - 647
  • [28] Periodical sparse low-rank matrix estimation algorithm for fault detection of rolling bearings
    Wang, Baoxiang
    Liao, Yuhe
    Ding, Chuancang
    Zhang, Xining
    ISA TRANSACTIONS, 2020, 101 : 366 - 378
  • [29] Low-Rank Structured Covariance Matrix Estimation
    Shikhaliev, Azer P.
    Potter, Lee C.
    Chi, Yuejie
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (05) : 700 - 704
  • [30] Tensor Regression Using Low-Rank and Sparse Tucker Decompositions
    Ahmed, Talal
    Raja, Haroon
    Bajwa, Waheed U.
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (04): : 944 - 966