SPARSE AND LOW-RANK MATRIX QUANTILE ESTIMATION WITH APPLICATION TO QUADRATIC REGRESSION

被引:7
作者
Lu, Wenqi [1 ,2 ]
Zhu, Zhongyi [1 ]
Lian, Heng [2 ,3 ,4 ]
机构
[1] Nankai Univ, Sch Stat & Data Sci, Tianjin, Peoples R China
[2] Fudan Univ, Sch Management, Shanghai 200433, Peoples R China
[3] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[4] CityU Shenzhen Res Inst, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Dual norm; interaction effects; matrix regression; penalization; VARIABLE SELECTION; PENALIZATION; COMPLETION; ALGORITHM;
D O I
10.5705/ss.202021.0140
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This study examines matrix quantile regression where the covariate is a matrix and the response is a scalar. Although the statistical estimation of ma-trix regression is an active field of research, few studies examine quantile regression with matrix covariates. We propose an estimation procedure based on convex reg-ularizations in a high-dimensional setting. In order to reduce the dimensionality, the coefficient matrix is assumed to be low rank and/or sparse. Thus, we impose two regularizers to encourage different low-dimensional structures. We develop the asymptotic properties and an implementation based on the incremental proximal gradient algorithm. We then apply the proposed estimator to quadratic quantile regression, and demonstrate its advantages using simulations and a real-data analysis.
引用
收藏
页码:945 / 959
页数:15
相关论文
共 35 条
  • [1] Incremental proximal methods for large scale convex optimization
    Bertsekas, Dimitri P.
    [J]. MATHEMATICAL PROGRAMMING, 2011, 129 (02) : 163 - 195
  • [2] A LASSO FOR HIERARCHICAL INTERACTIONS
    Bien, Jacob
    Taylor, Jonathan
    Tibshirani, Robert
    [J]. ANNALS OF STATISTICS, 2013, 41 (03) : 1111 - 1141
  • [3] Bühlmann P, 2011, SPRINGER SER STAT, P1, DOI 10.1007/978-3-642-20192-9
  • [4] JOINT VARIABLE AND RANK SELECTION FOR PARSIMONIOUS ESTIMATION OF HIGH-DIMENSIONAL MATRICES
    Bunea, Florentina
    She, Yiyuan
    Wegkamp, Marten H.
    [J]. ANNALS OF STATISTICS, 2012, 40 (05) : 2359 - 2388
  • [5] OPTIMAL SELECTION OF REDUCED RANK ESTIMATORS OF HIGH-DIMENSIONAL MATRICES
    Bunea, Florentina
    She, Yiyuan
    Wegkamp, Marten H.
    [J]. ANNALS OF STATISTICS, 2011, 39 (02) : 1282 - 1309
  • [6] Matrix Completion With Noise
    Candes, Emmanuel J.
    Plan, Yaniv
    [J]. PROCEEDINGS OF THE IEEE, 2010, 98 (06) : 925 - 936
  • [7] Quantile processes for semi and nonparametric regression
    Chao, Shih-Kang
    Volgushev, Stanislav
    Cheng, Guang
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 3272 - 3331
  • [8] Reduced rank stochastic regression with a sparse singular value decomposition
    Chen, Kun
    Chan, Kung-Sik
    Stenseth, Nils Chr.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2012, 74 : 203 - 221
  • [9] Variable Selection With the Strong Heredity Constraint and Its Oracle Property
    Choi, Nam Hee
    Li, William
    Zhu, Ji
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) : 354 - 364
  • [10] Variable selection via nonconcave penalized likelihood and its oracle properties
    Fan, JQ
    Li, RZ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) : 1348 - 1360