SPARSE AND LOW-RANK MATRIX QUANTILE ESTIMATION WITH APPLICATION TO QUADRATIC REGRESSION

被引:7
|
作者
Lu, Wenqi [1 ,2 ]
Zhu, Zhongyi [1 ]
Lian, Heng [2 ,3 ,4 ]
机构
[1] Nankai Univ, Sch Stat & Data Sci, Tianjin, Peoples R China
[2] Fudan Univ, Sch Management, Shanghai 200433, Peoples R China
[3] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[4] CityU Shenzhen Res Inst, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Dual norm; interaction effects; matrix regression; penalization; VARIABLE SELECTION; PENALIZATION; COMPLETION; ALGORITHM;
D O I
10.5705/ss.202021.0140
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This study examines matrix quantile regression where the covariate is a matrix and the response is a scalar. Although the statistical estimation of ma-trix regression is an active field of research, few studies examine quantile regression with matrix covariates. We propose an estimation procedure based on convex reg-ularizations in a high-dimensional setting. In order to reduce the dimensionality, the coefficient matrix is assumed to be low rank and/or sparse. Thus, we impose two regularizers to encourage different low-dimensional structures. We develop the asymptotic properties and an implementation based on the incremental proximal gradient algorithm. We then apply the proposed estimator to quadratic quantile regression, and demonstrate its advantages using simulations and a real-data analysis.
引用
收藏
页码:945 / 959
页数:15
相关论文
共 50 条
  • [1] The rate of convergence for sparse and low-rank quantile trace regression
    Tan, Xiangyong
    Peng, Ling
    Xiao, Peiwen
    Liu, Qing
    Liu, Xiaohui
    JOURNAL OF COMPLEXITY, 2023, 79
  • [2] Sparse and Low-Rank Covariance Matrix Estimation
    Zhou S.-L.
    Xiu N.-H.
    Luo Z.-Y.
    Kong L.-C.
    Journal of the Operations Research Society of China, 2015, 3 (02) : 231 - 250
  • [3] Improved sparse low-rank matrix estimation
    Parekh, Ankit
    Selesnick, Ivan W.
    SIGNAL PROCESSING, 2017, 139 : 62 - 69
  • [4] TENSOR QUANTILE REGRESSION WITH LOW-RANK TENSOR TRAIN ESTIMATION
    Liu, Zihuan
    Lee, Cheuk Yin
    Zhang, Heping
    ANNALS OF APPLIED STATISTICS, 2024, 18 (02): : 1294 - 1318
  • [5] Sparse Bayesian Methods for Low-Rank Matrix Estimation
    Babacan, S. Derin
    Luessi, Martin
    Molina, Rafael
    Katsaggelos, Aggelos K.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (08) : 3964 - 3977
  • [6] Adaptive quantile low-rank matrix factorization
    Xu, Shuang
    Zhang, Chun-Xia
    Zhang, Jiangshe
    PATTERN RECOGNITION, 2020, 103
  • [7] Sparse and Low-Rank Matrix Decompositions
    Chandrasekaran, Venkat
    Sanghavi, Sujay
    Parrilo, Pablo A.
    Willsky, Alan S.
    2009 47TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, VOLS 1 AND 2, 2009, : 962 - +
  • [8] Matrix-Variate Regression for Sparse, Low-Rank Estimation of Brain Connectivities Associated With a Clinical Outcome
    Brzyski, Damian
    Hu, Xixi
    Goni, Joaquin
    Ances, Beau
    Randolph, Timothy W.
    Harezlak, Jaroslaw
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2024, 71 (04) : 1378 - 1390
  • [9] Sparse and Low-Rank Decomposition of Covariance Matrix for Efficient DOA Estimation
    Chen, Yong
    Wang, Fang
    Wan, Jianwei
    Xu, Ke
    2017 IEEE 9TH INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS (ICCSN), 2017, : 957 - 961
  • [10] Boosted Sparse and Low-Rank Tensor Regression
    He, Lifang
    Chen, Kun
    Xu, Wanwan
    Zhou, Jiayu
    Wang, Fei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31