SPARSE AND LOW-RANK MATRIX QUANTILE ESTIMATION WITH APPLICATION TO QUADRATIC REGRESSION
被引:7
作者:
Lu, Wenqi
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Stat & Data Sci, Tianjin, Peoples R China
Fudan Univ, Sch Management, Shanghai 200433, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, Tianjin, Peoples R China
Lu, Wenqi
[1
,2
]
Zhu, Zhongyi
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Stat & Data Sci, Tianjin, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, Tianjin, Peoples R China
Zhu, Zhongyi
[1
]
Lian, Heng
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Management, Shanghai 200433, Peoples R China
City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
CityU Shenzhen Res Inst, Shenzhen, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, Tianjin, Peoples R China
Lian, Heng
[2
,3
,4
]
机构:
[1] Nankai Univ, Sch Stat & Data Sci, Tianjin, Peoples R China
[2] Fudan Univ, Sch Management, Shanghai 200433, Peoples R China
[3] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[4] CityU Shenzhen Res Inst, Shenzhen, Peoples R China
This study examines matrix quantile regression where the covariate is a matrix and the response is a scalar. Although the statistical estimation of ma-trix regression is an active field of research, few studies examine quantile regression with matrix covariates. We propose an estimation procedure based on convex reg-ularizations in a high-dimensional setting. In order to reduce the dimensionality, the coefficient matrix is assumed to be low rank and/or sparse. Thus, we impose two regularizers to encourage different low-dimensional structures. We develop the asymptotic properties and an implementation based on the incremental proximal gradient algorithm. We then apply the proposed estimator to quadratic quantile regression, and demonstrate its advantages using simulations and a real-data analysis.
机构:
Cornell Univ, Dept Biol Stat & Computat Biol, Ithaca, NY 14853 USA
Cornell Univ, Dept Stat Sci, Ithaca, NY 14853 USACornell Univ, Dept Biol Stat & Computat Biol, Ithaca, NY 14853 USA
Bien, Jacob
Taylor, Jonathan
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Stat, Stanford, CA 94305 USACornell Univ, Dept Biol Stat & Computat Biol, Ithaca, NY 14853 USA
Taylor, Jonathan
Tibshirani, Robert
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Stat, Stanford, CA 94305 USA
Stanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USACornell Univ, Dept Biol Stat & Computat Biol, Ithaca, NY 14853 USA
机构:
Cornell Univ, Dept Biol Stat & Computat Biol, Ithaca, NY 14853 USA
Cornell Univ, Dept Stat Sci, Ithaca, NY 14853 USACornell Univ, Dept Biol Stat & Computat Biol, Ithaca, NY 14853 USA
Bien, Jacob
Taylor, Jonathan
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Stat, Stanford, CA 94305 USACornell Univ, Dept Biol Stat & Computat Biol, Ithaca, NY 14853 USA
Taylor, Jonathan
Tibshirani, Robert
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Stat, Stanford, CA 94305 USA
Stanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USACornell Univ, Dept Biol Stat & Computat Biol, Ithaca, NY 14853 USA