Explainable AI for Retinoblastoma Diagnosis: Interpreting Deep Learning Models with LIME and SHAP

被引:61
作者
Aldughayfiq, Bader [1 ]
Ashfaq, Farzeen [2 ]
Jhanjhi, N. Z. [2 ]
Humayun, Mamoona [1 ]
机构
[1] Jouf Univ, Coll Comp & Informat Sci, Dept Informat Syst, Sakaka 72388, Saudi Arabia
[2] Taylors Univ, Sch Comp Sci, Subang Jaya 47500, Malaysia
关键词
retinoblastoma; explainable AI; deep learning; LIME; SHAP; medical image analysis; InceptionV3; transfer learning; CLASSIFICATION;
D O I
10.3390/diagnostics13111932
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Retinoblastoma is a rare and aggressive form of childhood eye cancer that requires prompt diagnosis and treatment to prevent vision loss and even death. Deep learning models have shown promising results in detecting retinoblastoma from fundus images, but their decision-making process is often considered a "black box" that lacks transparency and interpretability. In this project, we explore the use of LIME and SHAP, two popular explainable AI techniques, to generate local and global explanations for a deep learning model based on InceptionV3 architecture trained on retinoblastoma and non-retinoblastoma fundus images. We collected and labeled a dataset of 400 retinoblastoma and 400 non-retinoblastoma images, split it into training, validation, and test sets, and trained the model using transfer learning from the pre-trained InceptionV3 model. We then applied LIME and SHAP to generate explanations for the model's predictions on the validation and test sets. Our results demonstrate that LIME and SHAP can effectively identify the regions and features in the input images that contribute the most to the model's predictions, providing valuable insights into the decision-making process of the deep learning model. In addition, the use of InceptionV3 architecture with spatial attention mechanism achieved high accuracy of 97% on the test set, indicating the potential of combining deep learning and explainable AI for improving retinoblastoma diagnosis and treatment.
引用
收藏
页数:19
相关论文
共 60 条
[1]   Screening for retinoblastoma: presenting signs as prognosticators of patient and ocular survival [J].
Abramson, DH ;
Beaverson, K ;
Sangani, P ;
Vora, RA ;
Lee, TC ;
Hochberg, HM ;
Kirszrot, J ;
Ranjithan, M .
PEDIATRICS, 2003, 112 (06) :1248-1255
[2]  
Adebayo J, 2018, Arxiv, DOI [arXiv:1810.03307, 10.48550/arXiv.1810.03307, DOI 10.48550/ARXIV.1810.03307]
[3]   Glaucoma diagnosis using multi-feature analysis and a deep learning technique [J].
Akter, Nahida ;
Fletcher, John ;
Perry, Stuart ;
Simunovic, Matthew P. ;
Briggs, Nancy ;
Roy, Maitreyee .
SCIENTIFIC REPORTS, 2022, 12 (01)
[4]   Deep Learning-Based Prediction of Diabetic Retinopathy Using CLAHE and ESRGAN for Enhancement [J].
Alwakid, Ghadah ;
Gouda, Walaa ;
Humayun, Mamoona .
HEALTHCARE, 2023, 11 (06)
[5]  
Durai CAD, 2021, Arxiv, DOI [arXiv:2103.07622, 10.48550/arXiv.2103.07622, DOI 10.48550/ARXIV.2103.07622]
[6]   Using Dual Attention BiLSTM to Predict Vehicle Lane Changing Maneuvers on Highway Dataset [J].
Ashfaq, Farzeen ;
Ghoniem, Rania M. ;
Jhanjhi, N. Z. ;
Khan, Navid Ali ;
Algarni, Abeer D. .
SYSTEMS, 2023, 11 (04)
[7]  
Association A, RETINOBLASTOMA
[8]   Deep Learning Techniques for Diabetic Retinopathy Classification: A Survey [J].
Atwany, Mohammad Z. ;
Sahyoun, Abdulwahab H. ;
Yaqub, Mohammad .
IEEE ACCESS, 2022, 10 :28642-28655
[9]   Application of deep learning for retinal image analysis: A review [J].
Badar, Maryam ;
Haris, Muhammad ;
Fatima, Anam .
COMPUTER SCIENCE REVIEW, 2020, 35
[10]   Machine learning applied to retinal image processing for glaucoma detection: review and perspective [J].
Barros, Daniele M. S. ;
Moura, Julio C. C. ;
Freire, Cefas R. ;
Taleb, Alexandre C. ;
Valentim, Ricardo A. M. ;
Morais, Philippi S. G. .
BIOMEDICAL ENGINEERING ONLINE, 2020, 19 (01)