Magnetic resonance imaging-radiomics in endometrial cancer: a systematic review and meta-analysis

被引:42
作者
Di Donato, Violante [1 ]
Kontopantelis, Evangelos [2 ]
Cuccu, Ilaria [1 ]
Sgamba, Ludovica [1 ]
Golia D'Auge, Tullio [1 ]
Pernazza, Angelina [3 ]
Della Rocca, Carlo [3 ]
Manganaro, Lucia [4 ]
Catalano, Carlo [4 ]
Perniola, Giorgia [1 ]
Palaia, Innocenza [1 ]
Tomao, Federica [1 ]
Giannini, Andrea [5 ]
Muzii, Ludovico [1 ]
Bogani, Giorgio [6 ]
机构
[1] Univ Rome Sapienza, Dept Maternal Child Hlth & Urol Sci, Policlin Umberto 1, Rome, Italy
[2] Univ Manchester, Div Informat Imaging & Data Sci, Manchester, England
[3] Univ Rome Sapienza, Dept Med Surg Sci & Biotechnol, Rome, Italy
[4] Univ Rome Sapienza, Dept Radiol Oncol & Pathol Sci, Policlin Umberto 1, Rome, Italy
[5] Univ Rome Sapienza, Dept Med & Surg Sci & Translat Med, Policlin Umberto 1, Rome, Italy
[6] IRCCS Natl Canc Inst, Dept Gynecol Oncol, Milan, Italy
关键词
Endometrial Neoplasms; Lymph Nodes; Sentinel Lymph Node; Uterine Cancer; Uterine Neoplasms; PREOPERATIVE RISK STRATIFICATION; LYMPHOVASCULAR SPACE INVASION; LYMPH-NODE METASTASIS; MRI; MODEL; LYMPHADENECTOMY; PREDICTION; NOMOGRAM; FEATURES; SOCIETY;
D O I
10.1136/ijgc-2023-004313
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
ObjectiveEndometrial carcinoma is the most common gynecological tumor in developed countries. Clinicopathological factors and molecular subtypes are used to stratify the risk of recurrence and to tailor adjuvant treatment. The present study aimed to assess the role of radiomics analysis in pre-operatively predicting molecular or clinicopathological prognostic factors in patients with endometrial carcinoma. MethodsLiterature was searched for publications reporting radiomics analysis in assessing diagnostic performance of MRI for different outcomes. Diagnostic accuracy performance of risk prediction models was pooled using the metandi command in Stata. ResultsA search of MEDLINE (PubMed) resulted in 153 relevant articles. Fifteen articles met the inclusion criteria, for a total of 3608 patients. MRI showed pooled sensitivity and specificity 0.785 and 0.814, respectively, in predicting high-grade endometrial carcinoma, deep myometrial invasion (pooled sensitivity and specificity 0.743 and 0.816, respectively), lymphovascular space invasion (pooled sensitivity and specificity 0.656 and 0.753, respectively), and nodal metastasis (pooled sensitivity and specificity 0.831 and 0.736, respectively). ConclusionsPre-operative MRI-radiomics analyses in patients with endometrial carcinoma is a good predictor of tumor grading, deep myometrial invasion, lymphovascular space invasion, and nodal metastasis.
引用
收藏
页码:1070 / 1076
页数:7
相关论文
共 46 条
[1]   Prediction of tumor grade and lymphovascular space invasion in endometrial adenocarcinoma with MR imaging-based radiomic analysis [J].
Bereby-Kahane, M. ;
Dautry, R. ;
Matzner-Lober, E. ;
Cornelis, F. ;
Sebbag-Sfez, D. ;
Place, V ;
Mezzadri, M. ;
Soyer, P. ;
Dohan, A. .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2020, 101 (06) :401-411
[2]   Preoperative Prediction Value of Pelvic Lymph Node Metastasis of Endometrial Cancer: Combining of ADC Value and Radiomics Features of the Primary Lesion and Clinical Parameters [J].
Bo, Juan ;
Jia, Haodong ;
Zhang, Yu ;
Fu, Baoyue ;
Jiang, Xueyan ;
Chen, Yulan ;
Shi, Bin ;
Fang, Xin ;
Dong, Jiangning .
JOURNAL OF ONCOLOGY, 2022, 2022
[3]   Sentinel node mapping vs. sentinel node mapping plus back-up lymphadenectomy in high-risk endometrial cancer patients: Results from a multi-institutional study [J].
Bogani, Giorgio ;
Papadia, Andrea ;
Buda, Alessandro ;
Casarin, Jvan ;
Di Donato, Violante ;
Gasparri, Maria Luisa ;
Plotti, Francesco ;
Pinelli, Ciro ;
Paderno, Maria Chiara ;
Lopez, Salvatore ;
Perrone, Anna Myriam ;
Barra, Fabio ;
Guerrisi, Rocco ;
Brusadelli, Claudia ;
Cromi, Antonella ;
Ferrari, Debora ;
Chiapp, Valentina ;
Signorelli, Mauro ;
Maggiore, Umberto Leone Roberti ;
Ditto, Antonino ;
Palaia, Innocenza ;
Ferrero, Simone ;
De Iaco, Pierandrea ;
Angioli, Roberto ;
Panici, Pierluigi Benedetti ;
Ghezzi, Fabio ;
Landoni, Fabio ;
Mueller, Michael D. ;
Raspagliesi, Francesco .
GYNECOLOGIC ONCOLOGY, 2021, 161 (01) :122-129
[4]   MRI- and Histologic-Molecular-Based Radio-Genomics Nomogram for Preoperative Assessment of Risk Classes in Endometrial Cancer [J].
Celli, Veronica ;
Guerreri, Michele ;
Pernazza, Angelina ;
Cuccu, Ilaria ;
Palaia, Innocenza ;
Tomao, Federica ;
Di Donato, Violante ;
Pricolo, Paola ;
Ercolani, Giada ;
Ciulla, Sandra ;
Colombo, Nicoletta ;
Leopizzi, Martina ;
Di Maio, Valeria ;
Faiella, Eliodoro ;
Santucci, Domiziana ;
Soda, Paolo ;
Cordelli, Ermanno ;
Perniola, Giorgia ;
Gui, Benedetta ;
Rizzo, Stefania ;
Della Rocca, Carlo ;
Petralia, Giuseppe ;
Catalano, Carlo ;
Manganaro, Lucia .
CANCERS, 2022, 14 (23)
[5]   MRI-Based Radiomic Model for Preoperative Risk stratification in Stage I Endometrial Cancer [J].
Chen, Jingya ;
Gu, Hailei ;
Fan, Weimin ;
Wang, Yaohui ;
Chen, Shuai ;
Chen, Xiao ;
Wang, Zhongqiu .
JOURNAL OF CANCER, 2021, 12 (03) :726-734
[6]   Deep learning for the determination of myometrial invasion depth and automatic lesion identification in endometrial cancer MR imaging: a preliminary study in a single institution [J].
Chen, Xiaojun ;
Wang, Yida ;
Shen, Minhua ;
Yang, Bingyi ;
Zhou, Qing ;
Yi, Yinqiao ;
Liu, Weifeng ;
Zhang, Guofu ;
Yang, Guang ;
Zhang, He .
EUROPEAN RADIOLOGY, 2020, 30 (09) :4985-4994
[7]   Combining positron emission tomography/computed tomography, radiomics, and sentinel lymph node mapping for nodal staging of endometrial cancer patients [J].
Crivellaro, Cinzia ;
Landoni, Claudio ;
Elisei, Federica ;
Buda, Alessandro ;
Bonacina, Manuela ;
Grassi, Tommaso ;
Monaco, Lavinia ;
Giuliani, Daniela ;
Gotuzzo, Irene ;
Magni, Sonia ;
Di Martino, Giampaolo ;
Delle Marchette, Martina ;
Guerra, Luca ;
Landoni, Fabio ;
Fruscio, Robert ;
Messa, Cristina ;
De Bernardi, Elisabetta .
INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2020, 30 (03) :378-382
[8]   Radiomics of the primary tumour as a tool to improve 18F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer [J].
De Bernardi, Elisabetta ;
Buda, Alessandro ;
Guerra, Luca ;
Vicini, Debora ;
Elisei, Federica ;
Landoni, Claudio ;
Fruscio, Robert ;
Messa, Cristina ;
Crivellaro, Cinzia .
EJNMMI RESEARCH, 2018, 8
[9]   Using Deep Learning with Convolutional Neural Network Approach to Identify the Invasion Depth of Endometrial Cancer in Myometrium Using MR Images: A Pilot Study [J].
Dong, Hsiang-Chun ;
Dong, Hsiang-Kai ;
Yu, Mu-Hsien ;
Lin, Yi-Hsin ;
Chang, Cheng-Chang .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020, 17 (16) :1-18
[10]   Whole-Volume Tumor MRI Radiomics for Prognostic Modeling in Endometrial Cancer [J].
Fasmer, Kristine E. ;
Hodneland, Erlend ;
Dybvik, Julie A. ;
Wagner-Larsen, Kari ;
Trovik, Jone ;
Salvesen, Oyvind ;
Krakstad, Camilla ;
Haldorsen, Ingfrid H. S. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 53 (03) :928-937