Quantum key distribution in a packet-switched network

被引:6
作者
Mandil, Reem [1 ,2 ]
DiAdamo, Stephen [3 ]
Qi, Bing [1 ]
Shabani, Alireza [1 ]
机构
[1] Cisco Quantum Lab, Los Angeles, CA USA
[2] Univ Toronto, Toronto, ON, Canada
[3] Cisco Quantum Lab, Bavaria, Garching, Bavaria, Germany
关键词
OPTICAL-FIBER; CRYPTOGRAPHY;
D O I
10.1038/s41534-023-00757-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Packet switching revolutionized the Internet by allowing the efficient use of network resources for data transmission. In a previous work, we introduced packet switching in quantum networks as a path to the Quantum Internet and presented a proof-of-concept for its application to quantum key distribution (QKD). In this paper, we outline a three-step approach for key rate optimization in a packet-switched network. Our simulated results show that practical key rates may be achieved in a sixteen-user network with no optical storage capacity. Under certain network conditions, we may improve the key rate by using an ultra-low-loss fiber delay line to store packets during network delays. We also find that implementing cut-off storage times in a strategy analogous to real-time selection in free-space QKD can significantly enhance performance. Our work demonstrates that packet switching is imminently suitable as a platform for QKD, an important step towards developing large-scale and integrated quantum networks.
引用
收藏
页数:10
相关论文
共 38 条
[1]  
Abbate Janet., 1999, INVENTING INTERNET
[2]  
Baran P., 1962, On Distributed Communications Networks
[3]   Quantum cryptography: Public key distribution and coin tossing [J].
Bennett, Charles H. ;
Brassard, Gilles .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :7-11
[4]   Experimental demonstration of memory-enhanced quantum communication [J].
Bhaskar, M. K. ;
Riedinger, R. ;
Machielse, B. ;
Levonian, D. S. ;
Nguyen, C. T. ;
Knall, E. N. ;
Park, H. ;
Englund, D. ;
Loncar, M. ;
Sukachev, D. D. ;
Lukin, M. D. .
NATURE, 2020, 580 (7801) :60-+
[5]   Optical networking for quantum key distribution and quantum communications [J].
Chapuran, T. E. ;
Toliver, P. ;
Peters, N. A. ;
Jackel, J. ;
Goodman, M. S. ;
Runser, R. J. ;
McNown, S. R. ;
Dallmann, N. ;
Hughes, R. J. ;
McCabe, K. P. ;
Nordholt, J. E. ;
Peterson, C. G. ;
Tyagi, K. T. ;
Mercer, L. ;
Dardy, H. .
NEW JOURNAL OF PHYSICS, 2009, 11
[6]   An integrated space-to-ground quantum communication network over 4,600 kilometres [J].
Chen, Yu-Ao ;
Zhang, Qiang ;
Chen, Teng-Yun ;
Cai, Wen-Qi ;
Liao, Sheng-Kai ;
Zhang, Jun ;
Chen, Kai ;
Yin, Juan ;
Ren, Ji-Gang ;
Chen, Zhu ;
Han, Sheng-Long ;
Yu, Qing ;
Liang, Ken ;
Zhou, Fei ;
Yuan, Xiao ;
Zhao, Mei-Sheng ;
Wang, Tian-Yin ;
Jiang, Xiao ;
Zhang, Liang ;
Liu, Wei-Yue ;
Li, Yang ;
Shen, Qi ;
Cao, Yuan ;
Lu, Chao-Yang ;
Shu, Rong ;
Wang, Jian-Yu ;
Li, Li ;
Liu, Nai-Le ;
Xu, Feihu ;
Wang, Xiang-Bin ;
Peng, Cheng-Zhi ;
Pan, Jian-Wei .
NATURE, 2021, 589 (7841) :214-+
[7]   Packet switching in quantum networks: A path to the quantum Internet [J].
DiAdamo, Stephen ;
Qi, Bing ;
Miller, Glen ;
Kompella, Ramana ;
Shabani, Alireza .
PHYSICAL REVIEW RESEARCH, 2022, 4 (04)
[8]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[9]   Current status of the DARPA quantum network [J].
Elliott, C ;
Colvin, A ;
Pearson, D ;
Pikalo, O ;
Schlafer, J ;
Yeh, H .
QUANTUM INFORMATION AND COMPUTATION III, 2005, 5815 :138-149
[10]   Wavelength division multiplexing of continuous variable quantum key distribution and 18.3 Tbit/s data channels [J].
Eriksson, Tobias A. ;
Hirano, Takuya ;
Puttnam, Benjamin J. ;
Rademacher, Georg ;
Luis, Ruben S. ;
Fujiwara, Mikio ;
Namiki, Ryo ;
Awaji, Yoshinari ;
Takeoka, Masahiro ;
Wada, Naoya ;
Sasaki, Masahide .
COMMUNICATIONS PHYSICS, 2019, 2 (1)