Reusing the steel slag to design a gradient-doped high-entropy oxide for high-performance sodium ion batteries

被引:48
作者
Feng, Jiameng [1 ]
Liu, Yang [2 ]
Fang, De [1 ]
Li, Jianling [1 ]
机构
[1] Univ Sci & Technol Beijing, State Key Lab Adv Met, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Energy & Environm Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
High-entropy cathode materials; Steel slag; Gradient doping; Anionic redox; Na plus /vacancy ordering; INTERPHASES; STABILITY;
D O I
10.1016/j.nanoen.2023.109030
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, a high-entropy layered oxide (HEO) is proposed as an outstanding cathode material for long-life sodium-ion batteries. Based on the self-segregation of elements from surface to bulk phase, a multi-element gradient doped high-entropy cathode material is prepared by doping steel slag with available elements (Mg, Al, Si, Fe, Ca). The surface high-entropy region vastly improves the air stability of materials and reduces surface impurities and side reactions. The Na-O-Mg configuration of near-surface high-entropy region continuously stimulates the anionic redox activity, and the DEMS shows the high-strength Al-O bonding achieves zero oxygen release. Therefore, the LNSM-0.01 reveals a stable capacity of similar to 24 mA h g(-1) in the range of 4.0-4.5 V. The Ca2+ in bulk phase high-entropy region disrupts the Na+/vacancy ordering transition and enhances the kinetic performance (90 mA h g(-1) at 1000 mA g(-1)), while Fe2+/3+ provides a large amount number of charge compensation. Further, DFT calculations prove that the entropy stability based on synergistic effect immeasurably reinforce the layered oxide configuration, building a more robust structural framework during cycling. This work deepens the understanding on multi-element gradient doping to prepare HEOs, and provides a novel pathway for resource utilization of solid waste.
引用
收藏
页数:14
相关论文
共 50 条
[1]   Li+ Transport and Mechanical Properties of Model Solid Electrolyte Interphases (SEI): Insight from Atomistic Molecular Dynamics Simulations [J].
Bedrov, Dmitry ;
Borodin, Oleg ;
Hooper, Justin B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (30) :16098-16109
[2]   Comprehensively Strengthened Metal-Oxygen Bonds for Reversible Anionic Redox Reaction [J].
Cai, Congcong ;
Li, Xinyuan ;
Hu, Ping ;
Zhu, Ting ;
Li, Jiantao ;
Fan, Hao ;
Yu, Ruohan ;
Zhang, Tianyi ;
Lee, Sungsik ;
Zhou, Liang ;
Mai, Liqiang .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (24)
[3]   Using High-Entropy Configuration Strategy to Design Na-Ion Layered Oxide Cathodes with Superior Electrochemical Performance and Thermal Stability [J].
Ding, Feixiang ;
Zhao, Chenglong ;
Xiao, Dongdong ;
Rong, Xiaohui ;
Wang, Haibo ;
Li, Yuqi ;
Yang, Yang ;
Lu, Yaxiang ;
Hu, Yong-Sheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (18) :8286-8295
[4]   Coupling structural evolution and oxygen-redox electrochemistry in layered transition metal oxides [J].
Eum, Donggun ;
Kim, Byunghoon ;
Song, Jun-Hyuk ;
Park, Hyeokjun ;
Jang, Ho-Young ;
Kim, Sung Joo ;
Cho, Sung-Pyo ;
Lee, Myeong Hwan ;
Heo, Jae Hoon ;
Park, Jaehyun ;
Ko, Youngmin ;
Park, Sung Kwan ;
Kim, Jinsoo ;
Oh, Kyungbae ;
Kim, Do-Hoon ;
Kang, Seok Ju ;
Kang, Kisuk .
NATURE MATERIALS, 2022, 21 (06) :664-+
[5]   High-voltage liquid electrolytes for Li batteries: progress and perspectives [J].
Fan, Xiulin ;
Wang, Chunsheng .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (18) :10486-10566
[6]   Al-Doping Driven Suppression of Capacity and Voltage Fadings in 4d-Element Containing Li-Ion-Battery Cathode Materials: Machine Learning and Density Functional Theory [J].
Ha, Miran ;
Hajibabaei, Amir ;
Kim, Dong Yeon ;
Singh, Aditya Narayan ;
Yun, Jeonghun ;
Myung, Chang Woo ;
Kim, Kwang S. .
ADVANCED ENERGY MATERIALS, 2022, 12 (30)
[7]   New insights into the critical role of inactive element substitution in improving the rate performance of sodium oxide cathode material [J].
Hou, Ying ;
Jin, Junteng ;
Huo, Chuanrui ;
Liu, Yongchang ;
Deng, Shiqing ;
Chen, Jun .
ENERGY STORAGE MATERIALS, 2023, 56 :87-95
[8]   Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes [J].
House, Robert A. ;
Maitra, Urmimala ;
Perez-Osorio, Miguel A. ;
Lozano, Juan G. ;
Jin, Liyu ;
Somerville, James W. ;
Duda, Laurent C. ;
Nag, Abhishek ;
Walters, Andrew ;
Zhou, Ke-Jin ;
Roberts, Matthew R. ;
Bruce, Peter G. .
NATURE, 2020, 577 (7791) :502-+
[9]   What Triggers Oxygen Loss in Oxygen Redox Cathode Materials? [J].
House, Robert A. ;
Maitra, Urmimala ;
Jin, Liyu ;
Lozano, Juan G. ;
Somerville, James W. ;
Rees, Nicholas H. ;
Naylor, Andrew J. ;
Duda, Laurent C. ;
Massel, Felix ;
Chadwick, Alan V. ;
Ramos, Silvia ;
Pickup, David M. ;
McNally, Daniel E. ;
Lu, Xingye ;
Schmitt, Thorsten ;
Roberts, Matthew R. ;
Bruce, Peter G. .
CHEMISTRY OF MATERIALS, 2019, 31 (09) :3293-3300
[10]   Unveiling the Complementary Manganese and Oxygen Redox Chemistry for Stabilizing the Sodium-Ion Storage Behaviors of Layered Oxide Cathodes [J].
Jin, Junteng ;
Liu, Yongchang ;
Shen, Qiuyu ;
Zhao, Xudong ;
Zhang, Jian ;
Song, Yuzhu ;
Li, Tianyu ;
Xing, Xianran ;
Chen, Jun .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (29)