CONJUGACY CLASSES OF N-ELEMENTS AND NILPOTENT/ABELIAN HALL N-SUBGROUPS

被引:3
作者
Hung, Nguyen N. [1 ]
Maroti, Attila [2 ]
Martinez, Juan [3 ]
机构
[1] Univ Akron, Buchtel Coll Arts & Sci, Dept Math, Akron, OH 44325 USA
[2] Hungarian Acad Sci, Alfred Reny Inst Math, Budapest, Hungary
[3] Univ Valencia, Dept Matemat, Valencia, Spain
基金
欧洲研究理事会;
关键词
finite classes; sr-elements; Hall; PROBABILITY; NUMBERS;
D O I
10.2140/pjm.2023.323.185
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group and N be a set of primes. We study finite groups with a large number of conjugacy classes of N-elements. In particular, we obtain precise lower bounds for this number in terms of the N-part of the order of G to ensure the existence of a nilpotent or abelian Hall N-subgroup in G.
引用
收藏
页码:185 / 204
页数:21
相关论文
共 23 条
[21]   2 COMBINATORIAL PROBLEMS IN GROUP-THEORY [J].
NEUMANN, PM .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1989, 21 :456-458
[22]   CHARACTER TABLES FOR SL(3,Q), SU(3,Q2), PSL(3,Q), PSU(3,Q2) [J].
SIMPSON, WA ;
FRAME, JS .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1973, 25 (03) :486-494
[23]   CONJUGACY CLASSES OF p-ELEMENTS AND NORMAL p-COMPLEMENTS [J].
Tong-Viet, Hung P. .
PACIFIC JOURNAL OF MATHEMATICS, 2020, 308 (01) :207-222