CONJUGACY CLASSES OF N-ELEMENTS AND NILPOTENT/ABELIAN HALL N-SUBGROUPS

被引:3
作者
Hung, Nguyen N. [1 ]
Maroti, Attila [2 ]
Martinez, Juan [3 ]
机构
[1] Univ Akron, Buchtel Coll Arts & Sci, Dept Math, Akron, OH 44325 USA
[2] Hungarian Acad Sci, Alfred Reny Inst Math, Budapest, Hungary
[3] Univ Valencia, Dept Matemat, Valencia, Spain
基金
欧洲研究理事会;
关键词
finite classes; sr-elements; Hall; PROBABILITY; NUMBERS;
D O I
10.2140/pjm.2023.323.185
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group and N be a set of primes. We study finite groups with a large number of conjugacy classes of N-elements. In particular, we obtain precise lower bounds for this number in terms of the N-part of the order of G to ensure the existence of a nilpotent or abelian Hall N-subgroup in G.
引用
收藏
页码:185 / 204
页数:21
相关论文
共 23 条
[1]  
[Anonymous], 1971, Pure and Applied Mathematics
[2]   NILPOTENT AND ABELIAN HALL SUBGROUPS IN FINITE GROUPS [J].
Beltran, Antonio ;
Jose Felipe, Maria ;
Malle, Gunter ;
Moreto, Alexander ;
Navarro, Gabriel ;
Sanus, Lucia ;
Solomon, Ronald ;
Tiep, Pham Huu .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (04) :2497-2513
[3]  
Burness TC, 2022, Arxiv, DOI arXiv:2112.08681
[4]  
Carter R. W., 1985, Finite groups of Lie type: conjugacy classes and complex characters
[5]  
CONWAY JS, 1985, ALA AGR EXP STA BULL, P1
[6]   Commuting probabilities of finite groups [J].
Eberhard, Sean .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2015, 47 :796-808
[7]   BOUNDS ON THE NUMBER AND SIZES OF CONJUGACY CLASSES IN FINITE CHEVALLEY GROUPS WITH APPLICATIONS TO DERANGEMENTS [J].
Fulman, Jason ;
Guralnick, Robert .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (06) :3023-3070
[8]   On the commuting probability in finite groups [J].
Guralnick, Robert M. ;
Robinson, Geoffrey R. .
JOURNAL OF ALGEBRA, 2006, 300 (02) :509-528
[9]   WHAT IS PROBABILITY THAT 2 GROUP ELEMENTS COMMUTE [J].
GUSTAFSON, WH .
AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (09) :1031-1034
[10]  
Hall P., 1956, Proc. Lond. Math. Soc., Vs3, P286