CONJUGACY CLASSES OF N-ELEMENTS AND NILPOTENT/ABELIAN HALL N-SUBGROUPS

被引:3
作者
Hung, Nguyen N. [1 ]
Maroti, Attila [2 ]
Martinez, Juan [3 ]
机构
[1] Univ Akron, Buchtel Coll Arts & Sci, Dept Math, Akron, OH 44325 USA
[2] Hungarian Acad Sci, Alfred Reny Inst Math, Budapest, Hungary
[3] Univ Valencia, Dept Matemat, Valencia, Spain
基金
欧洲研究理事会;
关键词
finite classes; sr-elements; Hall; PROBABILITY; NUMBERS;
D O I
10.2140/pjm.2023.323.185
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group and N be a set of primes. We study finite groups with a large number of conjugacy classes of N-elements. In particular, we obtain precise lower bounds for this number in terms of the N-part of the order of G to ensure the existence of a nilpotent or abelian Hall N-subgroup in G.
引用
收藏
页码:185 / 204
页数:21
相关论文
共 23 条
  • [1] NILPOTENT AND ABELIAN HALL SUBGROUPS IN FINITE GROUPS
    Beltran, Antonio
    Jose Felipe, Maria
    Malle, Gunter
    Moreto, Alexander
    Navarro, Gabriel
    Sanus, Lucia
    Solomon, Ronald
    Tiep, Pham Huu
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (04) : 2497 - 2513
  • [2] Burness TC, 2022, Arxiv, DOI arXiv:2112.08681
  • [3] Carter R.W., 1985, Pure Appl. Math.
  • [4] CONWAY JS, 1985, ALA AGR EXP STA BULL, P1
  • [5] Dornhoff L., 1971, Pure Appl. Math, V7
  • [6] Commuting probabilities of finite groups
    Eberhard, Sean
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2015, 47 : 796 - 808
  • [7] BOUNDS ON THE NUMBER AND SIZES OF CONJUGACY CLASSES IN FINITE CHEVALLEY GROUPS WITH APPLICATIONS TO DERANGEMENTS
    Fulman, Jason
    Guralnick, Robert
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (06) : 3023 - 3070
  • [8] On the commuting probability in finite groups
    Guralnick, Robert M.
    Robinson, Geoffrey R.
    [J]. JOURNAL OF ALGEBRA, 2006, 300 (02) : 509 - 528
  • [9] WHAT IS PROBABILITY THAT 2 GROUP ELEMENTS COMMUTE
    GUSTAFSON, WH
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (09) : 1031 - 1034
  • [10] Hall P., 1956, P LOND MATH SOC, V6, P286