Dynamical Study of Coupled Riemann Wave Equation Involving Conformable, Beta, and M-Truncated Derivatives via Two Efficient Analytical Methods

被引:16
作者
Ansar, Rimsha [1 ]
Abbas, Muhammad [1 ]
Mohammed, Pshtiwan Othman [2 ]
Al-Sarairah, Eman [3 ,4 ]
Gepreel, Khaled A. [5 ]
Soliman, Mohamed S. [6 ]
机构
[1] Univ Sargodha, Dept Math, Sargodha 40100, Pakistan
[2] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani 46001, Iraq
[3] Khalifa Univ, Dept Math, POB 127788, Abu Dhabi, U Arab Emirates
[4] Al Hussein Bin Talal Univ, Dept Math, POB 20, Maan 71111, Jordan
[5] Taif Univ, Coll Sci, Dept Math & Stat, POB 11099, Taif 21944, Saudi Arabia
[6] Taif Univ, Coll Engn, Dept Elect Engn, POB 11099, Taif 21944, Saudi Arabia
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 07期
关键词
coupled Riemann wave equation; modified auxiliary equation method; Jacobi elliptic function method; beta-derivative (& beta; -D); M-truncated derivative; conformable derivative; ELLIPTIC-FUNCTION-METHOD; FRACTIONAL CALCULUS; SOLITON-SOLUTIONS; MODEL;
D O I
10.3390/sym15071293
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, the Jacobi elliptic function method (JEFM) and modified auxiliary equation method (MAEM) are used to investigate the solitary wave solutions of the nonlinear coupled Riemann wave (RW) equation. Nonlinear coupled partial differential equations (NLPDEs) can be transformed into a collection of algebraic equations by utilising a travelling wave transformation. This study's objective is to learn more about the non-linear coupled RW equation, which accounts for tidal waves, tsunamis, and static uniform media. The variance in the governing model's travelling wave behavior is investigated using the conformable, beta, and M-truncated derivatives (M-TD). The aforementioned methods can be used to derive solitary wave solutions for trigonometric, hyperbolic, and jacobi functions. We may produce periodic solutions, bell-form soliton, anti-bell-shape soliton, M-shaped, and W-shaped solitons by altering specific parameter values. The mathematical form of each pair of travelling wave solutions is symmetric. Lastly, in order to emphasise the impact of conformable, beta, and M-TD on the behaviour and symmetric solutions for the presented problem, the 2D and 3D representations of the analytical soliton solutions can be produced using Mathematica 10.
引用
收藏
页数:28
相关论文
共 54 条
  • [1] NON-LINEAR EVOLUTION EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF PAINLEVE TYPE
    ABLOWITZ, MJ
    RAMANI, A
    SEGUR, H
    [J]. LETTERE AL NUOVO CIMENTO, 1978, 23 (09): : 333 - 338
  • [2] A study of variation in dynamical behavior of fractional complex Ginzburg-Landau model for different fractional operators
    Akram, Ghazala
    Arshed, Saima
    Sadaf, Maasoomah
    Farooq, Kainat
    [J]. AIN SHAMS ENGINEERING JOURNAL, 2023, 14 (09)
  • [3] Efficient techniques for traveling wave solutions of time-fractional Zakharov-Kuznetsov equation
    Akram, Ghazala
    Sadaf, Maasoomah
    Abbas, Muhammad
    Zainab, Iqra
    Gillani, Syeda Rijaa
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 193 : 607 - 622
  • [4] The dynamical study of Biswas-Arshed equation via modified auxiliary equation method
    Akram, Ghazala
    Sadaf, Maasoomah
    Zainab, Iqra
    [J]. OPTIK, 2022, 255
  • [5] Physical properties of the projectile motion using the conformable derivative
    Alharbi, Fahad M.
    Baleanu, Dumitru
    Ebaid, Abdelhalim
    [J]. CHINESE JOURNAL OF PHYSICS, 2019, 58 : 18 - 28
  • [6] A Caputo fractional derivative of a function with respect to another function
    Almeida, Ricardo
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 44 : 460 - 481
  • [7] On nonlinear optical solitons of fractional Biswas-Arshed Model with beta derivative
    Arafat, S. M. Yiasir
    Islam, S. M. Rayhanul
    Rahman, M. M.
    Saklayen, M. A.
    [J]. RESULTS IN PHYSICS, 2023, 48
  • [8] Arnold VI., 1983, GEOMETRICAL METHODS
  • [9] ARORA AK, 1987, INDIAN J PURE AP MAT, V18, P931
  • [10] Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order
    Atangana, Abdon
    Koca, Ilknur
    [J]. CHAOS SOLITONS & FRACTALS, 2016, 89 : 447 - 454