Multiscale modeling reveals aluminum nitride as an efficient propane dehydrogenation catalyst

被引:5
作者
Abdelgaid, Mona [1 ]
Miu, Evan V. [1 ]
Kwon, Hyunguk [1 ]
Kauppinen, Minttu M. [2 ,3 ]
Gronbeck, Henrik [2 ,3 ]
Mpourmpakis, Giannis [1 ]
机构
[1] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA
[2] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[3] Chalmers Univ Technol, Competence Ctr Catalysis, S-41296 Gothenburg, Sweden
基金
美国国家科学基金会;
关键词
FINDING SADDLE-POINTS; LIGHT ALKANES; ADSORPTION; PSEUDOPOTENTIALS; ACCURATE; DESIGN; SINGLE;
D O I
10.1039/d2cy02173k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nonoxidative propane dehydrogenation (PDH) is a promising route to meet the steadily increasing demand for propylene, an important building block in the chemical industry. Wurtzite group-IIIA metal nitrides are potential catalysts for PDH with high chemical, thermal, and mechanical stability alongside inherent Lewis acid-base properties that can activate the C-H bond of alkanes. Herein, we investigate the catalytic behavior of pristine (AlN) and gallium-doped (Ga/AlN) aluminum nitride for PDH via concerted and various stepwise mechanisms using density functional theory (DFT) calculations and microkinetic modeling (MKM). The reaction profiles investigated with DFT calculations are used in MKM, which reveals that the stepwise mechanisms produce >99% of propylene on both AlN and Ga/AlN. AlN has approximately one order of magnitude higher activity than Ga/AlN due to lower barriers along the dominant PDH reaction pathway. In summary, we propose the potential application of AlN as an efficient dehydrogenation catalyst for the conversion of light alkanes into valuable olefins. In addition, we show that multiscale simulations are essential to evaluate the catalytic behavior of complex alkane conversion reaction networks and obtain activity trends for dehydrogenation catalysts.
引用
收藏
页码:3527 / 3536
页数:11
相关论文
共 57 条
[1]   Structure-Activity Relationships in Lewis Acid-Base Heterogeneous Catalysis [J].
Abdelgaid, Mona ;
Mpourmpakis, Giannis .
ACS CATALYSIS, 2022, 12 (08) :4268-4289
[2]   Improving alkane dehydrogenation activity on γ-Al2O3 through Ga doping [J].
Abdelgaid, Mona ;
Dean, James ;
Mpourmpakis, Giannis .
CATALYSIS SCIENCE & TECHNOLOGY, 2020, 10 (21) :7194-7202
[3]   New Trends in Olefin Production [J].
Amghizar, Ismael ;
Vandewalle, Laurien A. ;
Van Geem, Kevin M. ;
Marin, Guy B. .
ENGINEERING, 2017, 3 (02) :171-178
[4]   Ethane Dehydrogenation on Single and Dual Centers of Ga-modified γ-Al2O3 [J].
Batchu, Sai Praneet ;
Wang, Hsuan-Lan ;
Chen, Weiqi ;
Zheng, Weiqing ;
Caratzoulas, Stavros ;
Lobo, Raul F. ;
Vlachos, Dionisios G. .
ACS CATALYSIS, 2021, 11 (03) :1380-1391
[5]   Kinetic model for Pd-based membranes coking/deactivation in propane dehydrogenation processes [J].
Brencio, Camilla ;
Gough, Robin ;
Bouter, Anouk de Leeuw den ;
Arratibel, Alba ;
Di Felice, Luca ;
Gallucci, Fausto .
CHEMICAL ENGINEERING JOURNAL, 2023, 452
[6]   Thermal transformation of metal oxide nanoparticles into nanocrystalline metal nitrides using cyanamide and urea as nitrogen source [J].
Buha, Jelena ;
Djerdj, Igor ;
Antonietti, Markus ;
Niederberger, Markus .
CHEMISTRY OF MATERIALS, 2007, 19 (14) :3499-3505
[7]   Dual-function catalysis in propane dehydrogenation over Pt1-Ga2O3 catalyst: Insights from a microkinetic analysis [J].
Chang, Qing-Yu ;
Wang, Kai-Qi ;
Hu, Ping ;
Sui, Zhi-Jun ;
Zhou, Xing-Gui ;
Chen, De ;
Yuan, Wei-Kang ;
Zhu, Yi-An .
AICHE JOURNAL, 2020, 66 (07)
[8]   Tuning Adsorption and Catalytic Properties of α-Cr2O3 and ZnO in Propane Dehydrogenation by Creating Oxygen Vacancy and Doping Single Pt Atom: A Comparative First-Principles Study [J].
Chang, Qing-Yu ;
Yin, Qiang ;
Ma, Fang ;
Zhu, Yi-An ;
Sui, Zhi-Jun ;
Zhou, Xing-Gui ;
Chen, De ;
Yuan, Wei-Kang .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (24) :10199-10209
[9]   Mechanistic insights of methane conversion to ethylene over gallium oxide and gallium nitride using density functional theory [J].
Chaudhari, Vishnu ;
Dutta, Kanchan ;
Li, Chao-Jun ;
Kopyscinski, Jan .
MOLECULAR CATALYSIS, 2020, 482
[10]   Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies [J].
Chen, Sai ;
Chang, Xin ;
Sun, Guodong ;
Zhang, Tingting ;
Xu, Yiyi ;
Wang, Yang ;
Pei, Chunlei ;
Gong, Jinlong .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (05) :3315-3354