The Scale of Supersymmetry Breaking and the Dark Dimension

被引:25
作者
Anchordoqui, Luis A. [1 ,2 ,3 ]
Antoniadis, Ignatios [4 ,5 ]
Cribiori, Niccolo [6 ]
Luest, Dieter [6 ,7 ]
Scalisi, Marco [6 ]
机构
[1] CUNY, Lehman Coll, Dept Phys & Astron, New York, NY 10468 USA
[2] CUNY, Grad Ctr, Dept Phys, New York, NY 10016 USA
[3] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA
[4] Sorbonne Univ, LPTHE, CNRS, 4 Pl Jussieu, F-75005 Paris, France
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[6] Werner Heisenberg Inst, Max Planck Inst Phys, Fohringer Ring 6, D-80805 Munich, Germany
[7] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
基金
美国国家科学基金会;
关键词
Supersymmetry Breaking; Extra Dimensions; String and Brane Phenomenology; Supergravity Models; SUPERSTRINGS;
D O I
10.1007/JHEP05(2023)060
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We argue for a relation between the supersymmetry breaking scale and the measured value of the dark energy density Lambda. We derive it by combining two quantum gravity consistency swampland constraints, which tie the dark energy density Lambda and the gravitino mass M-3/2, respectively, to the mass scale of a light Kaluza-Klein tower and, therefore, to the UV cut-off of the effective theory. Whereas the constraint on Lambda has recently led to the Dark Dimension scenario, with a prediction of a single mesoscopic extra dimension of the micron size, we use the constraint on M-3/2 to infer the implications of such a scenario for the scale of supersymmetry breaking. We find that a natural scale for supersymmetry signatures is M = O (Lambda(1/8)) = O(TeV). This mass scale is within reach of LHC and of the next generation of hadron colliders. Finally, we discuss possible string theory and effective supergravity realizations of the Dark Dimension scenario with broken supersymmetry.
引用
收藏
页数:19
相关论文
共 47 条
[1]  
Anchordoqui LA, 2022, Arxiv, DOI arXiv:2212.08527
[2]   Planck 2018 results: VI. Cosmological parameters [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battye, R. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Challinor, A. ;
Chiang, H. C. ;
Chluba, J. ;
Colombo, L. P. L. ;
Combet, C. ;
Contreras, D. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[3]  
Agmon NB, 2023, Arxiv, DOI arXiv:2212.06187
[4]   The dark universe: Primordial black hole • dark graviton gas connection [J].
Anchordoqui, Luis A. ;
Antoniadis, Ignatios ;
Lust, Dieter .
PHYSICS LETTERS B, 2023, 840
[5]   Dark dimension, the swampland, and the origin of cosmic rays beyond the Greisen-Zatsepin-Kuzmin barrier [J].
Anchordoqui, Luis A. .
PHYSICAL REVIEW D, 2022, 106 (11)
[6]   Dark dimension, the swampland, and the dark matter fraction composed of primordial black holes [J].
Anchordoqui, Luis A. ;
Antoniadis, Ignatios ;
Luest, Dieter .
PHYSICAL REVIEW D, 2022, 106 (08)
[7]   Supersymmetry breaking, open strings and M-theory [J].
Antoniadis, I ;
Dudas, E ;
Sagnotti, A .
NUCLEAR PHYSICS B, 1999, 544 (03) :469-502
[8]   ON SUPERSYMMETRY BREAKING IN SUPERSTRINGS [J].
ANTONIADIS, I ;
BACHAS, C ;
LEWELLEN, D ;
TOMARAS, T .
PHYSICS LETTERS B, 1988, 207 (04) :441-446
[9]   Brane supersymmetry breaking [J].
Antoniadis, I ;
Dudas, E ;
Sagnotti, A .
PHYSICS LETTERS B, 1999, 464 (1-2) :38-45
[10]   SUPERSTRING PHASE-TRANSITION AT HIGH-TEMPERATURE [J].
ANTONIADIS, I ;
KOUNNAS, C .
PHYSICS LETTERS B, 1991, 261 (04) :369-378