Circle packings from tilings of the plane

被引:0
|
作者
Rehwinkel, Philip [1 ]
Whitehead, Ian [1 ]
Yang, David [1 ]
Yang, Mengyuan [1 ]
机构
[1] Swarthmore Coll, Dept Math & Stat, Swarthmore, PA 19081 USA
关键词
Circle packing; Apollonian packing; Polyhedral packing; Koebe-Andreev-Thurston theorem;
D O I
10.1007/s00022-024-00715-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new class of fractal circle packings in the plane, generalizing the polyhedral packings defined by Kontorovich and Nakamura. The existence and uniqueness of these packings are guaranteed by infinite versions of the Koebe-Andreev-Thurston theorem. We prove structure theorems giving a complete description of the symmetry groups for these packings. And we give several examples to illustrate their number-theoretic and group-theoretic significance.
引用
收藏
页数:28
相关论文
共 43 条
  • [21] Asymptotic behavior of optimal circle packings in a square
    Nurmela, KJ
    Östergård, PRJ
    Spring, RAD
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1999, 42 (03): : 380 - 385
  • [22] NUMERICAL ANALYSIS OF QUASICONFORMAL MAPPINGS BY CIRCLE PACKINGS
    蓝师义
    戴道清
    Acta Mathematica Scientia, 2006, (01) : 94 - 98
  • [23] Rigidity of inversive distance circle packings revisited
    Xu, Xu
    ADVANCES IN MATHEMATICS, 2018, 332 : 476 - 509
  • [24] Infinite circle packings on surfaces with conical singularities
    Bowers, Philip L.
    Ruffoni, Lorenzo
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2025, 127
  • [25] Numerical analysis of quasiconformal mappings by circle packings
    Lan, SY
    Dai, DQ
    ACTA MATHEMATICA SCIENTIA, 2006, 26 (01) : 94 - 98
  • [26] An Inequality for Circle Packings Proved by Semidefinite Programming
    Pablo A. Parrilo
    Ronen Peretz
    Discrete & Computational Geometry, 2004, 31 : 357 - 367
  • [27] Schwarz’s lemma for the circle packings with the general combinatorics
    XiaoJun Huang
    JinSong Liu
    Liang Shen
    Science China Mathematics, 2010, 53 : 275 - 288
  • [28] Schwarz’s lemma for the circle packings with the general combinatorics
    HUANG XiaoJun1
    2Institute of Mathematics
    ScienceChina(Mathematics), 2010, 53 (02) : 277 - 290
  • [29] Schwarz's lemma for the circle packings with the general combinatorics
    Huang XiaoJun
    Liu JinSong
    Shen Liang
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (02) : 275 - 288
  • [30] Compact Packings of the Plane with Three Sizes of Discs
    Thomas Fernique
    Amir Hashemi
    Olga Sizova
    Discrete & Computational Geometry, 2021, 66 : 613 - 635