Circle packings from tilings of the plane

被引:0
|
作者
Rehwinkel, Philip [1 ]
Whitehead, Ian [1 ]
Yang, David [1 ]
Yang, Mengyuan [1 ]
机构
[1] Swarthmore Coll, Dept Math & Stat, Swarthmore, PA 19081 USA
关键词
Circle packing; Apollonian packing; Polyhedral packing; Koebe-Andreev-Thurston theorem;
D O I
10.1007/s00022-024-00715-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new class of fractal circle packings in the plane, generalizing the polyhedral packings defined by Kontorovich and Nakamura. The existence and uniqueness of these packings are guaranteed by infinite versions of the Koebe-Andreev-Thurston theorem. We prove structure theorems giving a complete description of the symmetry groups for these packings. And we give several examples to illustrate their number-theoretic and group-theoretic significance.
引用
收藏
页数:28
相关论文
共 43 条
  • [1] Circle packings from tilings of the plane
    Philip Rehwinkel
    Ian Whitehead
    David Yang
    Mengyuan Yang
    Journal of Geometry, 2024, 115
  • [2] Periodicity and circle packings of the hyperbolic plane
    Bowen, L
    GEOMETRIAE DEDICATA, 2003, 102 (01) : 213 - 236
  • [3] Periodicity and Circle Packings of the Hyperbolic Plane
    Lewis Bowen
    Geometriae Dedicata, 2003, 102 : 213 - 236
  • [4] Rigidity of circle packings with crosscuts
    Krieg, David
    Wegert, Elias
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2016, 57 (01): : 1 - 36
  • [5] Earthquakes and circle packings
    G. Brock Williams
    Journal d’Analyse Mathématique, 2001, 85 : 371 - 396
  • [6] Minkowski Circle Packings on the Sphere
    L. Fejes Tóth
    Discrete & Computational Geometry, 1999, 22 : 161 - 166
  • [7] Circle packings as differentiable manifolds
    Bauer, David
    Stephenson, Kenneth
    Wegert, Elias
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2012, 53 (02): : 399 - 420
  • [8] The Mobius invariants for circle packings
    Lan, Shi-Yi
    Nong, Li-Juan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (10) : 1409 - 1417
  • [9] Minkowski circle packings on the sphere
    Tóth, LF
    DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 22 (02) : 161 - 166
  • [10] A Geometric Study of Circle Packings and Ideal Class Groups
    Martin, Daniel E.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2024, 72 (01) : 181 - 208