Experimenting with Emerging RISC-V Systems for Decentralised Machine Learning

被引:5
|
作者
Mittone, Gianluca [1 ]
Tonci, Nicolo [2 ]
Birke, Robert [1 ]
Colonnelli, Iacopo [1 ]
Medic, Doriana [1 ]
Bartolini, Andrea [3 ]
Esposito, Roberto [1 ]
Parisi, Emanuele [3 ]
Beneventi, Francesco [3 ]
Polato, Mirko [1 ]
Torquati, Massimo [2 ]
Benini, Luca [3 ]
Aldinucci, Marco [1 ]
机构
[1] Univ Turin, Turin, Italy
[2] Univ Pisa, Pisa, Italy
[3] Univ Bologna, Bologna, Italy
关键词
Federated Learning; Edge Computing; RISC-V; Energy Consumption; Green Computing;
D O I
10.1145/3587135.3592211
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Decentralised Machine Learning (DML) enables collaborative machine learning without centralised input data. Federated Learning (FL) and Edge Inference are examples of DML. While tools for DML (especially FL) are starting to flourish, many are not flexible and portable enough to experiment with novel processors (e.g., RISC-V), non-fully connected network topologies, and asynchronous collaboration schemes. We overcome these limitations via a domain-specific language allowing us to map DML schemes to an underlying middleware, i.e. the FastFlow parallel programming library. We experiment with it by generating different working DML schemes on x86-64 and ARM platforms and an emerging RISC-V one. We characterise the performance and energy efficiency of the presented schemes and systems. As a byproduct, we introduce a RISC-V porting of the PyTorch framework, the first publicly available to our knowledge.
引用
收藏
页码:73 / 83
页数:11
相关论文
共 50 条
  • [41] Extended RISC-V hardware architecture for future digital communication systems
    Tourres, Mael
    Chavet, Cyrille
    Le Gal, Bertrand
    Crenne, Jeremie
    Coussy, Philippe
    2021 IEEE 4TH 5G WORLD FORUM (5GWF 2021), 2021, : 224 - 229
  • [42] Execution at RISC: Stealth JOP Attacks on RISC-V Applications
    Buckwell, Loic
    Gilles, Olivier
    Perez, Daniel Gracia
    Kosmatov, Nikolai
    COMPUTER SECURITY. ESORICS 2023 INTERNATIONAL WORKSHOPS, CPS4CIP, PT II, 2024, 14399 : 377 - 391
  • [43] Evolution and Revolution of Computer Systems Courses with the Open RISC-V ISA
    Zhang, Ke
    PROCEEDINGS OF THE ACM CONFERENCE ON GLOBAL COMPUTING EDUCATION (COMPED '19), 2019, : 171 - 171
  • [44] PicoRio: An Open-Source, RISC-V Small-Board Computer to Elevate the RISC-V Software Ecosystem
    Zhangxi Tan
    Lin Zhang
    David Patterson
    Yi Li
    Tsinghua Science and Technology, 2021, 26 (03) : 384 - 386
  • [45] PicoRio: An Open-Source, RISC-V Small-Board Computer to Elevate the RISC-V Software Ecosystem
    Tan, Zhangxi
    Zhang, Lin
    Patterson, David
    Li, Yi
    TSINGHUA SCIENCE AND TECHNOLOGY, 2021, 26 (03) : 384 - 386
  • [46] Securing a RISC-V architecture: A dynamic approach
    Pillement, S.
    Real, M. Mendez
    Pottier, J.
    Nieddu, T.
    Le Gal, B.
    Faucou, S.
    Bechennec, J. L.
    Briday, M.
    Girbal, S.
    Le Rhun, J.
    Gilles, O.
    Perez, D. Gracia
    Sintzoff, A.
    Coulon, J. R.
    2023 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, DATE, 2023,
  • [47] Systematic RISC-V based Firmware Design
    Herdt, Vladimir
    Grosse, Daniel
    Drechsler, Rolf
    Gerum, Christoph
    Jung, Alexander
    Benz, Joscha-Joel
    Bringmann, Oliver
    Schwarz, Michael
    Stoffel, Dominik
    Kunz, Wolfgang
    PROCEEDINGS OF THE 2019 FORUM ON SPECIFICATION AND DESIGN LANGUAGES (FDL), 2019,
  • [48] HeapSafe: Securing Unprotected Heaps in RISC-V
    De, Asmit
    Ghosh, Swaroop
    2022 35TH INTERNATIONAL CONFERENCE ON VLSI DESIGN (VLSID 2022) HELD CONCURRENTLY WITH 2022 21ST INTERNATIONAL CONFERENCE ON EMBEDDED SYSTEMS (ES 2022), 2022, : 120 - 125
  • [49] Al Acceleration with RISC-V for Edge Computing
    Yang, Chia-Hsiang
    2020 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2020,
  • [50] Integrating NVIDIA Deep Learning Accelerator (NVDLA) with RISC-V SoC on FireSim
    Farshchi, Farzad
    Huang, Qijing
    Yun, Heechul
    2019 2ND WORKSHOP ON ENERGY EFFICIENT MACHINE LEARNING AND COGNITIVE COMPUTING FOR EMBEDDED APPLICATIONS (EMC2 2019), 2019, : 21 - 25