Candidate-aware Graph Contrastive Learning for Recommendation

被引:16
|
作者
He, Wei [1 ]
Sun, Guohao [1 ]
Lu, Jinhu [1 ]
Fang, Xiu Susie [1 ]
机构
[1] Donghua Univ, Shanghai, Peoples R China
关键词
Recommendation System; Graph Neural Network; Contrastive Learning; Candidate;
D O I
10.1145/3539618.3591647
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, Graph Neural Networks (GNNs) have become a mainstream recommender system method, where it captures high-order collaborative signals between nodes by performing convolution operations on the user-item interaction graph to predict user preferences for different items. However, in real scenarios, the useritem interaction graph is extremely sparse, which means numerous users only interact with a small number of items, resulting in the inability of GNN in learning high-quality node embeddings. To alleviate this problem, the Graph Contrastive Learning (GCL)-based recommender system method is proposed. GCL improves embedding quality by maximizing the similarity of the positive pair and minimizing the similarity of the negative pair. However, most GCL-based methods use heuristic data augmentation methods, i.e., random node/edge drop and attribute masking, to construct contrastive pairs, resulting in the loss of important information. To solve the problems in GCL-based methods, we propose a novel method, Candidate-aware Graph Contrastive Learning for Recommendation, called CGCL. In CGCL, we explore the relationship between the user and the candidate item in the embedding at different layers and use similar semantic embeddings to construct contrastive pairs. By our proposed CGCL, we construct structural neighbor contrastive learning objects, candidate contrastive learning objects, and candidate structural neighbor contrastive learning objects to obtain high-quality node embeddings. To validate the proposed model, we conducted extensive experiments on three publicly available datasets. Compared with various state-of-the-art DNN-, GNN- and GCL-based methods, our proposed CGCL achieved significant improvements in all indicators(1).
引用
收藏
页码:1670 / 1679
页数:10
相关论文
共 50 条
  • [41] Heterogeneous Graph Contrastive Learning with Attention Mechanism for Recommendation
    Li, Ruxing
    Yang, Dan
    Gong, Xi
    ENGINEERING LETTERS, 2024, 32 (10) : 1930 - 1938
  • [42] Mixed Augmentation Contrastive Learning for Graph Recommendation System
    Dong, Zhuolun
    Yang, Yan
    Zhong, Yingli
    WEB AND BIG DATA, APWEB-WAIM 2024, PT II, 2024, 14962 : 130 - 143
  • [43] SSGCL: Simple Social Recommendation with Graph Contrastive Learning
    Duan, Zhihua
    Wang, Chun
    Zhong, Wending
    MATHEMATICS, 2024, 12 (07)
  • [44] Contrastive Graph Semantic Learning via prototype for recommendation
    Wen, Mi
    Wang, Hongwei
    Li, Weiwei
    Fan, Zizhu
    Yu, Xiaoqing
    INFORMATION SCIENCES, 2025, 699
  • [45] Higher-Order Graph Contrastive Learning for Recommendation
    Zheng, ZhenZhong
    Li, Jianxin
    Wu, Xiaoming
    Liu, Xiangzhi
    Pei, Lili
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PT VI, DASFAA 2024, 2024, 14855 : 35 - 51
  • [46] Graph contrastive learning for recommendation with generative data augmentation
    Li, Xiaoge
    Wang, Yin
    Wang, Yihan
    An, Xiaochun
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [47] AsGCL: Attentive and Simple Graph Contrastive Learning for Recommendation
    Li, Jie
    Yang, Changchun
    APPLIED SCIENCES-BASEL, 2025, 15 (05):
  • [48] Multitask learning of adversarial-contrastive graph for recommendation
    Ma, Xingyu
    Wang, Chuanxu
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (02)
  • [49] Adaptive denoising graph contrastive learning with memory graph attention for recommendation
    Ma, Gang-Feng
    Yang, Xu-Hua
    Gao, Liang-Yu
    Lian, Ling-Hang
    NEUROCOMPUTING, 2024, 610
  • [50] CAA: Candidate-Aware Aggregation for Temporal Action Detection
    Ren, Yifan
    Xu, Xing
    Shen, Fumin
    Yao, Yazhou
    Lu, Huimin
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 4930 - 4938