Candidate-aware Graph Contrastive Learning for Recommendation

被引:16
作者
He, Wei [1 ]
Sun, Guohao [1 ]
Lu, Jinhu [1 ]
Fang, Xiu Susie [1 ]
机构
[1] Donghua Univ, Shanghai, Peoples R China
来源
PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023 | 2023年
关键词
Recommendation System; Graph Neural Network; Contrastive Learning; Candidate;
D O I
10.1145/3539618.3591647
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, Graph Neural Networks (GNNs) have become a mainstream recommender system method, where it captures high-order collaborative signals between nodes by performing convolution operations on the user-item interaction graph to predict user preferences for different items. However, in real scenarios, the useritem interaction graph is extremely sparse, which means numerous users only interact with a small number of items, resulting in the inability of GNN in learning high-quality node embeddings. To alleviate this problem, the Graph Contrastive Learning (GCL)-based recommender system method is proposed. GCL improves embedding quality by maximizing the similarity of the positive pair and minimizing the similarity of the negative pair. However, most GCL-based methods use heuristic data augmentation methods, i.e., random node/edge drop and attribute masking, to construct contrastive pairs, resulting in the loss of important information. To solve the problems in GCL-based methods, we propose a novel method, Candidate-aware Graph Contrastive Learning for Recommendation, called CGCL. In CGCL, we explore the relationship between the user and the candidate item in the embedding at different layers and use similar semantic embeddings to construct contrastive pairs. By our proposed CGCL, we construct structural neighbor contrastive learning objects, candidate contrastive learning objects, and candidate structural neighbor contrastive learning objects to obtain high-quality node embeddings. To validate the proposed model, we conducted extensive experiments on three publicly available datasets. Compared with various state-of-the-art DNN-, GNN- and GCL-based methods, our proposed CGCL achieved significant improvements in all indicators(1).
引用
收藏
页码:1670 / 1679
页数:10
相关论文
共 50 条
  • [1] Candidate-Aware Attention Enhanced Graph Neural Network for News Recommendation
    Li, Xiaohong
    Li, Ruihong
    Peng, Qixuan
    Ma, Huifang
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT III, KSEM 2023, 2023, 14119 : 244 - 255
  • [2] Geography-aware Heterogeneous Graph Contrastive Learning for Travel Recommendation
    Chen, Lei
    Cao, Jie
    Liang, Weichao
    Ye, Qiaolin
    ACM TRANSACTIONS ON SPATIAL ALGORITHMS AND SYSTEMS, 2024, 10 (03)
  • [3] Information Compensation Graph Contrastive Learning for Recommendation
    Zhenhai Wang
    Yunlong Guo
    Xiaoli Zhao
    Qi Liu
    Weimin Li
    Chang Liu
    Neural Processing Letters, 57 (3)
  • [4] Intelligible graph contrastive learning with attention-aware for recommendation
    Mo, Xian
    Zhao, Zihang
    He, Xiaoru
    Qi, Hang
    Liu, Hao
    NEUROCOMPUTING, 2025, 614
  • [5] Enhancing Knowledge-Aware Recommendation with Dual-Graph Contrastive Learning
    Huang, Jinchao
    Xie, Zhipu
    Zhang, Han
    Yang, Bin
    Di, Chong
    Huang, Runhe
    INFORMATION, 2024, 15 (09)
  • [6] Contrastive Graph Learning for Social Recommendation
    Zhang, Yongshuai
    Huang, Jiajin
    Li, Mi
    Yang, Jian
    FRONTIERS IN PHYSICS, 2022, 10
  • [7] Attention-aware graph contrastive learning with topological relationship for recommendation
    Mo, Xian
    Pang, Jun
    Zhao, Zihang
    APPLIED SOFT COMPUTING, 2025, 174
  • [8] TagRec: Temporal-Aware Graph Contrastive Learning With Theoretical Augmentation for Sequential Recommendation
    Peng, Tianhao
    Yuan, Haitao
    Zhang, Yongqi
    Li, Yuchen
    Dai, Peihong
    Wang, Qunbo
    Wang, Senzhang
    Wu, Wenjun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (05) : 3015 - 3029
  • [9] Celebrity-aware Graph Contrastive Learning Framework for Social Recommendation
    Hu, Zheng
    Nakagawa, Satoshi
    Luo, Liang
    Gu, Yu
    Ren, Fuji
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 793 - 802
  • [10] Graph Contrastive Learning with Knowledge Transfer for Recommendation
    Zhang, Baoxin
    Yang, Dan
    Liu, Yang
    Zhang, Yu
    ENGINEERING LETTERS, 2024, 32 (03) : 477 - 487