Fourier Transform of the Lippmann-Schwinger Equation: Solving Vectorial Electromagnetic Scattering by Arbitrary Shapes

被引:0
作者
Gruy, Frederic [1 ]
Rabiet, Victor [1 ,2 ]
Perrin, Mathias [2 ]
机构
[1] Ecole Natl Super Mines, Ctr SPIN, F-42100 St Etienne, France
[2] Univ Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
关键词
electromagnetic scattering; integral equation; singular integral; Fourier Transform; COUPLED-WAVE METHOD; LIGHT-SCATTERING; INTEGRAL OPERATOR; DIFFRACTION; REPRESENTATION; CONVERGENCE; FORMULATION; PARTICLES; EFFICIENT; DYNAMICS;
D O I
10.3390/math11224691
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Electromagnetics, the field scattered by an ensemble of particles-of arbitrary size, shape, and material-can be obtained by solving the Lippmann-Schwinger equation. This singular vectorial integral equation is generally formulated in the direct space Rn (typically n=2 or n=3). In the article, we rigorously computed the Fourier transform of the vectorial Lippmann-Schwinger equation in the space of tempered distributions, S '(R3), splitting it in a singular and a regular contribution. One eventually obtains a simple equation for the scattered field in the Fourier space. This permits to draw an explicit link between the shape of the scatterer and the field through the Fourier Transform of the body indicator function. We compare our results with accurate calculations based on the T-matrix method and find a good agreement.
引用
收藏
页数:23
相关论文
共 51 条
  • [1] LIGHT-SCATTERING BY TENUOUS PARTICLES - GENERALIZATION OF RAYLEIGH-GANS-ROCARD APPROACH
    ACQUISTA, C
    [J]. APPLIED OPTICS, 1976, 15 (11): : 2932 - 2936
  • [2] Nonequilibrium Dynamics Induced by Scattering Forces for Optically Trapped Nanoparticles in Strongly Inertial Regimes
    Amarouchene, Yacine
    Mangeat, Matthieu
    Montes, Benjamin Vidal
    Ondic, Lukas
    Guerin, Thomas
    Dean, David S.
    Louyer, Yann
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (18)
  • [3] Representation of the near-field, middle-field, and far-field electromagnetic Green's functions in reciprocal space
    Arnoldus, HF
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2001, 18 (04) : 547 - 555
  • [4] Wide Range Color Tuning in Single Emissive Layer Organic Light Emitting Transistors
    Bachelet, Alexandre
    Fasquel, Sophie
    Rampnoux, Jean-Michel
    Jonusauskas, Gediminas
    Takimiya, Kazuo
    Hirsch, Lionel
    Perrin, Mathias
    Abbas, Mamatimin
    [J]. ACS PHOTONICS, 2023, 10 (08) : 2793 - 2798
  • [5] Operational and convolution properties of three-dimensional Fourier transforms in spherical polar coordinates
    Baddour, Natalie
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2010, 27 (10) : 2144 - 2155
  • [6] Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure
    Bai, Q.
    Perrin, M.
    Sauvan, C.
    Hugonin, J-P
    Lalanne, P.
    [J]. OPTICS EXPRESS, 2013, 21 (22): : 27371 - 27382
  • [7] Giant Diffusion of Nanomechanical Rotors in a Tilted Washboard Potential
    Bellando, L.
    Kleine, M.
    Amarouchene, Y.
    Perrin, M.
    Louyer, Y.
    [J]. PHYSICAL REVIEW LETTERS, 2022, 129 (02)
  • [8] Bottom-up honeycomb top layer for light outcoupling enhancement in blue organic light emitting diodes
    Bertrand, A.
    Dumur, F.
    Mruczkiewicz, M.
    Perrin, M.
    Lartigau-Dagron, C.
    Bousquet, A.
    Vignau, L.
    Billon, L.
    Fasquel, S.
    [J]. ORGANIC ELECTRONICS, 2018, 52 : 222 - 229
  • [9] Progress in solid core photonic bandgap fibers
    Bouwmans, Geraud
    Pureur, Vincent
    Betourne, Aurelie
    Quiquempois, Yves
    Perrin, Mathias
    Bigot, Laurent
    Douay, Marc
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2007, 39 (12-13) : 949 - 961
  • [10] Spectrum of the volume integral operator of electromagnetic scattering
    Budko, Neil V.
    Samokhin, Alexander B.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (02) : 682 - 700