Enhancing Lie color algebras

被引:0
作者
Price, Kenneth L. [1 ,2 ]
机构
[1] Univ Wisconsin Oshkosh, Dept Mathemt, Oshkosh, WI USA
[2] Univ Wisconsin Oshkosh, Dept Mathemt, 800 Algoma Blvd, Oshkosh, WI 54901 USA
关键词
Lie color algebra; universal enveloping algebra; ENVELOPING-ALGEBRAS; PRIMENESS; CRITERION;
D O I
10.1080/00927872.2023.2278667
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lie color algebras generalize Lie superalgebras. We adapt a construction of Bahturin and Pagon to create enhanced Lie color algebras. This construction offers a much-needed method for constructing simple Lie color algebras. To illustrate its applicability, we demonstrate how to enhance any simple Lie superalgebra and obtain a simple Lie color algebra. Additionally, we show that if a Lie color algebra has a nonzero determinant, this property extends to its enhancement. This ensures its universal enveloping algebra is semiprime. Extra conditions on the grading group provide a primeness criterion.
引用
收藏
页码:1956 / 1964
页数:9
相关论文
共 18 条
[1]   ZERO DIVISORS IN ENVELOPING-ALGEBRAS OF GRADED LIE-ALGEBRAS [J].
AUBRY, M ;
LEMAIRE, JM .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1985, 38 (2-3) :159-166
[2]  
Bahturin Y, 2009, CONTEMP MATH, V483, P37
[3]   A CRITERION FOR PRIMENESS OF ENVELOPING-ALGEBRAS OF LIE-SUPERALGEBRAS [J].
BELL, AD .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1990, 69 (02) :111-120
[4]   Enveloping algebras of Lie color algebras: Primeness versus graded-primeness [J].
Bergen, J ;
Passman, DS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (06) :1627-1635
[5]   Representations and cocycle twists of color Lie algebras [J].
Chen, X. -W. ;
Silvestrov, S. D. ;
Van Oystaeyen, F. .
ALGEBRAS AND REPRESENTATION THEORY, 2006, 9 (06) :633-650
[6]  
De Naday Hornhardt C., 2020, Group gradings on classical Lie superalgebras
[7]  
Elduque A., 2013, Mathematical Surveys and Monographs, V189
[8]   Color Lie rings and PBW deformations of skew group algebras [J].
Fryer, S. ;
Kanstrup, T. ;
Kirkman, E. ;
Shepler, A. V. ;
Witherspoon, S. .
JOURNAL OF ALGEBRA, 2019, 518 :211-236
[9]   Group gradings on the superalgebras M(m, n), A(m, n) and P(n) [J].
Hornhardt, Caio De Naday ;
Dos Santos, Helen Samara ;
Kochetov, Mikhail .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (04) :1590-1616
[10]   LIE SUPER-ALGEBRAS [J].
KAC, VG .
ADVANCES IN MATHEMATICS, 1977, 26 (01) :8-96