Nilpotent Bicenters in Continuous Piecewise Z2-Equivariant Cubic Polynomial Hamiltonian Vector Fields: Cusp-Cusp Type

被引:0
作者
Chen, Ting [1 ,2 ]
Llibre, Jaume [3 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Peoples R China
[2] Guangdong Univ Finance & Econ, Sch Stat & Math, Guangzhou 510320, Peoples R China
[3] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Barcelona, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2023年 / 33卷 / 12期
基金
中国国家自然科学基金; 欧盟地平线“2020”;
关键词
Nilpotent; bicenters; Hamiltonian; phase portrait; LIMIT-CYCLES; CENTERS; BIFURCATION; SYSTEMS; ISOCHRONICITY; EQUATIONS;
D O I
10.1142/S0218127423501389
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the global dynamics for a class of continuous piecewise Z(2)-equivariant cubic Hamiltonian vector fields with nilpotent bicenters at (+/- 1, 0). We consider these polynomial vector fields with a challenging case where the bicenters (+/- 1, 0) come from the combination of two nilpotent cusps separated by y = 0. We call it a cusp-cusp type. We use the Poincare compactification, the blow-up theory, the index theory and the theory of discriminant sequence for determining the number of distinct or negative real roots of a polynomial, to classify the global phase portraits of these vector fields in the Poincare disc.
引用
收藏
页数:33
相关论文
共 44 条
[31]  
Li J., 2010, Qual. Theory Dyn. Syst, V9, P167, DOI DOI 10.1007/S12346-010-0024-7)
[32]   Hilbert's 16th problem and bifurcations of planar polynomial vector fields [J].
Li, JB .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (01) :47-106
[33]   Double Bifurcation of Nilpotent Focus [J].
Liu, Yirong ;
Li, Feng .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (03)
[34]   BIFURCATIONS OF LIMIT CYCLES CREATED BY A MULTIPLE NILPOTENT CRITICAL POINT OF PLANAR DYNAMICAL SYSTEMS [J].
Liu, Yirong ;
Li, Jibin .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (02) :497-504
[35]  
Lu Y, 1999, J SYMB COMPUT, V28, P225, DOI 10.1006/jsco.1998.0274
[36]  
Lv Y., 2019, NONLINEAR DYNAM, V74, P107
[37]  
Malkin K.E., 1964, VOLZ MAT SB VYP, V2, P87
[38]   LIENARD-TYPE EQUATIONS AND THE EPIDEMIOLOGY OF MALARIA [J].
MOREIRA, HN .
ECOLOGICAL MODELLING, 1992, 60 (02) :139-150
[39]  
Poincar H., 1881, J. Mathmatiques, V37, P375
[40]   On a codimension-three bifurcation arising in a simple dynamo model [J].
Skeldon, AC ;
Moroz, IM .
PHYSICA D, 1998, 117 (1-4) :117-127