Nilpotent Bicenters in Continuous Piecewise Z2-Equivariant Cubic Polynomial Hamiltonian Vector Fields: Cusp-Cusp Type

被引:0
作者
Chen, Ting [1 ,2 ]
Llibre, Jaume [3 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Peoples R China
[2] Guangdong Univ Finance & Econ, Sch Stat & Math, Guangzhou 510320, Peoples R China
[3] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Barcelona, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2023年 / 33卷 / 12期
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
Nilpotent; bicenters; Hamiltonian; phase portrait; LIMIT-CYCLES; CENTERS; BIFURCATION; SYSTEMS; ISOCHRONICITY; EQUATIONS;
D O I
10.1142/S0218127423501389
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the global dynamics for a class of continuous piecewise Z(2)-equivariant cubic Hamiltonian vector fields with nilpotent bicenters at (+/- 1, 0). We consider these polynomial vector fields with a challenging case where the bicenters (+/- 1, 0) come from the combination of two nilpotent cusps separated by y = 0. We call it a cusp-cusp type. We use the Poincare compactification, the blow-up theory, the index theory and the theory of discriminant sequence for determining the number of distinct or negative real roots of a polynomial, to classify the global phase portraits of these vector fields in the Poincare disc.
引用
收藏
页数:33
相关论文
共 44 条
  • [11] Chen T, 2022, NONLINEAR DYNAM, V110, P705, DOI 10.1007/s11071-022-07631-z
  • [12] Center condition and bifurcation of limit cycles for quadratic switching systems with a nilpotent equilibrium point
    Chen, Ting
    Huang, Lihong
    Yu, Pei
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 303 : 326 - 368
  • [13] Z2-equivariant linear type bi-center cubic polynomial Hamiltonian vector fields
    Chen, Ting
    Li, Shimin
    Llibre, Jaume
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (01) : 832 - 861
  • [14] Bifurcation of limit cycles at infinity in piecewise polynomial systems
    Chen, Ting
    Huang, Lihong
    Yu, Pei
    Huang, Wentao
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 41 : 82 - 106
  • [15] Isochronicity of centers in a switching Bautin system
    Chen, Xingwu
    Zhang, Weinian
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) : 2877 - 2899
  • [16] Hamiltonian linear type centers of linear plus cubic homogeneous polynomial vector fields
    Colak, Ilker E.
    Llibre, Jaume
    Valls, Claudia
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (05) : 1623 - 1661
  • [17] The center problem for discontinuous Lienard differential equation
    Coll, B
    Prohens, R
    Gasull, A
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (09): : 1751 - 1761
  • [18] Dulac H., 1908, Bull. Sci. Math. Ser., V32, P230
  • [19] Dumortier F, 2006, UNIVERSITEXT, P1
  • [20] Filippov A., 1988, DIFF EQUAT+, DOI 10.1007/978-94-015-7793-9