Nilpotent Bicenters in Continuous Piecewise Z2-Equivariant Cubic Polynomial Hamiltonian Vector Fields: Cusp-Cusp Type

被引:0
作者
Chen, Ting [1 ,2 ]
Llibre, Jaume [3 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Peoples R China
[2] Guangdong Univ Finance & Econ, Sch Stat & Math, Guangzhou 510320, Peoples R China
[3] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Barcelona, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2023年 / 33卷 / 12期
基金
中国国家自然科学基金; 欧盟地平线“2020”;
关键词
Nilpotent; bicenters; Hamiltonian; phase portrait; LIMIT-CYCLES; CENTERS; BIFURCATION; SYSTEMS; ISOCHRONICITY; EQUATIONS;
D O I
10.1142/S0218127423501389
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the global dynamics for a class of continuous piecewise Z(2)-equivariant cubic Hamiltonian vector fields with nilpotent bicenters at (+/- 1, 0). We consider these polynomial vector fields with a challenging case where the bicenters (+/- 1, 0) come from the combination of two nilpotent cusps separated by y = 0. We call it a cusp-cusp type. We use the Poincare compactification, the blow-up theory, the index theory and the theory of discriminant sequence for determining the number of distinct or negative real roots of a polynomial, to classify the global phase portraits of these vector fields in the Poincare disc.
引用
收藏
页数:33
相关论文
共 44 条
[11]  
Chen T, 2022, NONLINEAR DYNAM, V110, P705, DOI 10.1007/s11071-022-07631-z
[12]   Center condition and bifurcation of limit cycles for quadratic switching systems with a nilpotent equilibrium point [J].
Chen, Ting ;
Huang, Lihong ;
Yu, Pei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 303 :326-368
[13]   Z2-equivariant linear type bi-center cubic polynomial Hamiltonian vector fields [J].
Chen, Ting ;
Li, Shimin ;
Llibre, Jaume .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (01) :832-861
[14]   Bifurcation of limit cycles at infinity in piecewise polynomial systems [J].
Chen, Ting ;
Huang, Lihong ;
Yu, Pei ;
Huang, Wentao .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 41 :82-106
[15]   Isochronicity of centers in a switching Bautin system [J].
Chen, Xingwu ;
Zhang, Weinian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) :2877-2899
[16]   Hamiltonian linear type centers of linear plus cubic homogeneous polynomial vector fields [J].
Colak, Ilker E. ;
Llibre, Jaume ;
Valls, Claudia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (05) :1623-1661
[17]   The center problem for discontinuous Lienard differential equation [J].
Coll, B ;
Prohens, R ;
Gasull, A .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (09) :1751-1761
[18]  
Dulac H., 1908, Bull. Sci. Math. Ser., V32, P230
[19]  
Dumortier F, 2006, UNIVERSITEXT, P1
[20]  
Filippov A. F., 1988, DIFFERENTIAL EQUATIO