Nilpotent Bicenters in Continuous Piecewise Z2-Equivariant Cubic Polynomial Hamiltonian Vector Fields: Cusp-Cusp Type

被引:0
作者
Chen, Ting [1 ,2 ]
Llibre, Jaume [3 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Peoples R China
[2] Guangdong Univ Finance & Econ, Sch Stat & Math, Guangzhou 510320, Peoples R China
[3] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Barcelona, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2023年 / 33卷 / 12期
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
Nilpotent; bicenters; Hamiltonian; phase portrait; LIMIT-CYCLES; CENTERS; BIFURCATION; SYSTEMS; ISOCHRONICITY; EQUATIONS;
D O I
10.1142/S0218127423501389
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the global dynamics for a class of continuous piecewise Z(2)-equivariant cubic Hamiltonian vector fields with nilpotent bicenters at (+/- 1, 0). We consider these polynomial vector fields with a challenging case where the bicenters (+/- 1, 0) come from the combination of two nilpotent cusps separated by y = 0. We call it a cusp-cusp type. We use the Poincare compactification, the blow-up theory, the index theory and the theory of discriminant sequence for determining the number of distinct or negative real roots of a polynomial, to classify the global phase portraits of these vector fields in the Poincare disc.
引用
收藏
页数:33
相关论文
共 44 条
  • [1] Structurally Unstable Quadratic Vector Fields of Codimension Two: Families Possessing Either a Cusp Point or Two Finite Saddle-Nodes
    Artes, Joan C.
    Oliveira, Regilene D. S.
    Rezende, Alex C.
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2021, 33 (04) : 1779 - 1821
  • [2] Artés JC, 2012, ELECTRON J DIFFER EQ
  • [3] Centers of quasi-homogeneous polynomial differential equations of degree three
    Aziz, W.
    Llibre, J.
    Pantazi, C.
    [J]. ADVANCES IN MATHEMATICS, 2014, 254 : 233 - 250
  • [4] Banerjee S., 2001, NONLINEAR PHENOMENA, P262
  • [5] Bautin N. N., 1952, Amer. Math. Soc. Transl., V30, P1
  • [6] The discontinuous limit case of an archetypal oscillator with a constant excitation and van der Pol damping
    Chen, Hebai
    Tang, Yilei
    Wang, Zhaoxia
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2022, 438
  • [7] Global dynamics of a quintic Lienard system with Z2-symmetry I: saddle case
    Chen, Hebai
    Tang, Yilei
    Xiao, Dongmei
    [J]. NONLINEARITY, 2021, 34 (06) : 4332 - 4372
  • [8] GLOBAL PHASE PORTRAITS OF A DEGENERATE BOGDANOV-TAKENS SYSTEM WITH SYMMETRY (II)
    Chen, Hebai
    Chen, Xingwu
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (10): : 4141 - 4170
  • [9] GLOBAL PHASE PORTRAIT OF A DEGENERATE BOGDANOV-TAKENS SYSTEM WITH SYMMETRY
    Chen, Hebai
    Chen, Xingwu
    Xie, Jianhua
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (04): : 1273 - 1293
  • [10] Nilpotent Center in a Continuous Piecewise Quadratic Polynomial Hamiltonian Vector Field
    Chen, Ting
    Llibre, Jaume
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (08):