A Machine-Learning Method to Integrate Arctic Supersite Observations and Diagnose Weather Element Occurrence

被引:0
作者
Mariani, Zen [1 ]
Burrows, William R. [1 ]
Gascon, Gabrielle [2 ]
Crawford, Robert [1 ]
机构
[1] Environm & Climate Change Canada, Meteorol Res Div, Toronto, ON M3H 5T6, Canada
[2] Environm & Climate Change Canada, Meteorol Serv Canada, Edmonton, AB T6B 1K5, Canada
关键词
Arctic; random forest; machine-learning; remote sensing; meteorology; high impact weather; PRECIPITATION; SNOW; CLASSIFICATION; IQALUIT; WATER;
D O I
10.1080/07055900.2023.2257651
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The accurate detection and quantification of light precipitation is problematic, particularly in the Arctic region. Satellite and ground-based observations of light precipitation are frequently underestimated at high latitudes. Remote sensing and in-situ observations from the Iqaluit, NU supersite (64oN, 69oW) were integrated to train, develop, and validate a random forest (RF) model that can diagnose precipitation type and other weather element occurrences. Observations from multiple lidars, optical disdrometers, traditional precipitation gauges and meteorological aerodrome (METAR) reports from 2015-2020 were integrated and used in the RF model development. The model was trained at Iqaluit, validated over different time periods, and applied to another region (Whitehorse, YT; 61oN, 135oW). Results indicate the importance of accurate visibility observations to train the model. Overall, the RF model was capable of distinguishing precipitation types and demonstrated the potential to be used at all sites/networks where similar automated and cost-effective instruments are already deployed (e.g. radar sites, airports with ceilometers, etc.). This would reduce the dependency on METARs while improving weather element occurrence accuracy. [Traduit par la redaction] Une methode d'apprentissage automatique pour integrer les observations des supersites de l'Arctique et diagnostiquer la presence d'elements meteorologiques. La detection et la quantification precises des precipitations legeres posent probleme, en particulier dans la region arctique. Les observations satellitaires et terrestres des precipitations legeres sont souvent sous-estimees aux hautes latitudes. La teledetection et les observations in situ du supersite d'Iqaluit, au Nunavut (64oN, 69oW) ont ete integrees pour former, etablir et valider un modele de foret aleatoire (FA) qui peut diagnostiquer le type de precipitations et d'autres occurrences d'elements meteorologiques. Des observations provenant de multiples lidars, de disdrometres optiques, de pluviometres traditionnels et de rapports d'aerodromes meteorologiques (METAR) de 2015 a 2020 ont ete integrees et utilisees dans l'elaboration du modele de foret aleatoire. Le modele a ete mis a l'essai a Iqaluit, valide sur differentes periodes et applique a une autre region (Whitehorse, Yukon; 61oN, 135oW). Les resultats denotent l'importance d'observations precises de la visibilite pour mettre a l'essai le modele. Dans l'ensemble, le modele FA a ete capable de distinguer les types de precipitations et a montre qu'il pouvait etre utilise sur tous les sites/reseaux ou des instruments automatises et rentables similaires sont deja deployes (p. ex. sites radar, aeroports dotes de ceilometres, etc.). Cela permettrait de reduire la dependance a l'egard des METAR tout en ameliorant la precision de l'occurrence des elements meteorologiques.
引用
收藏
页码:119 / 134
页数:16
相关论文
共 54 条
  • [1] [Anonymous], CANSIM Table 051-0005: Estimates of Population, Canada, Provinces and Territories, quarterly (persons)
  • [2] Bair E., 2012, P 2012 INT SNOW SCI
  • [3] Fall velocity of snowflakes of different riming degree and crystal types
    Barthazy, E.
    Schefold, R.
    [J]. ATMOSPHERIC RESEARCH, 2006, 82 (1-2) : 391 - 398
  • [4] PARSIVEL Snow Observations: A Critical Assessment
    Battaglia, Alessandro
    Rustemeier, Elke
    Tokay, Ali
    Blahak, Ulrich
    Simmer, Clemens
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2010, 27 (02) : 333 - 344
  • [5] Ensemble lightning prediction models for the province of Alberta, Canada
    Blouin, Karen D.
    Flannigan, Mike D.
    Wang, Xianli
    Kochtubajda, Bohdan
    [J]. INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2016, 25 (04) : 421 - 432
  • [6] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [7] Breiman L., 1984, Classification and regression trees, DOI DOI 10.1201/9781315139470
  • [8] Blizzard Conditions in the Canadian Arctic: Observations and Automated Products for Forecasting
    Burrows, William R.
    Mooney, Curtis J.
    [J]. WEATHER AND FORECASTING, 2021, 36 (03) : 1113 - 1129
  • [9] Warm season lightning probability prediction for Canada and the northern United States
    Burrows, WR
    Price, C
    Wilson, LJ
    [J]. WEATHER AND FORECASTING, 2005, 20 (06) : 971 - 988
  • [10] Cote J, 1998, MON WEATHER REV, V126, P1373, DOI 10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO