Controllability of discrete-time semilinear Riemann-Liouville-like fractional equations

被引:8
|
作者
Malik, Muslim [1 ]
Vijayakumar, V. [2 ]
Shukla, Anurag [3 ]
机构
[1] Indian Inst Technol Mandi, Sch Basic Sci, Kamand 175005, Himachal Prades, India
[2] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
[3] Rajkiya Engn Coll Kannauj, Dept Appl Sci, Kannauj 209732, Uttar Pradesh, India
关键词
Discrete-time; Approximate controllability; C-0-semigroups; a-Resolvent sequences; APPROXIMATE CONTROLLABILITY; DIFFERENCE-EQUATIONS; STABILITY ANALYSIS; WELL-POSEDNESS; SYSTEMS; STATE; DELAY;
D O I
10.1016/j.chaos.2023.113959
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article utilizes the Riemann-Liouville-like fractional operator to investigate certain sufficient conditions for the approximate controllability of discrete-time fractional evolution equations. We describe our main results utilizing a sequential approach, the theory of difference equations, and the connection between a class of sequences of operators and C-0-semigroups. On the nonlinear term, we impose the Lipschitz-type condition. Finally, a few examples are provided to demonstrate how the outcomes might be used.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Lyapunov functions for Riemann-Liouville-like fractional difference equations
    Wu, Guo-Cheng
    Baleanu, Dumitru
    Luo, Wei-Hua
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 314 : 228 - 236
  • [2] Boundary controllability of Riemann-Liouville fractional semilinear equations
    Tajani, Asmae
    El Alaoui, Fatima-Zahrae
    Torres, Delfim F. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 131
  • [3] Regional Controllability of Riemann-Liouville Time-Fractional Semilinear Evolution Equations
    Tajani, Asmae
    El Alaoui, Fatima Zahrae
    Boutoulout, Ali
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [4] Boundary Controllability of Riemann–Liouville Fractional Semilinear Evolution Systems
    Asmae Tajani
    Fatima-Zahrae El Alaoui
    Journal of Optimization Theory and Applications, 2023, 198 : 767 - 780
  • [5] Boundary Controllability of Riemann-Liouville Fractional Semilinear Evolution Systems
    Tajani, Asmae
    El Alaoui, Fatima-Zahrae
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 198 (02) : 767 - 780
  • [6] Regional controllability analysis of fractional diffusion equations with Riemann-Liouville time fractional derivatives
    Ge, Fudong
    Chen, YangQuan
    Kou, Chunhai
    AUTOMATICA, 2017, 76 : 193 - 199
  • [7] Enlarged Controllability of Riemann-Liouville Fractional Differential Equations
    Karite, Touria
    Boutoulout, Ali
    Torres, Delfim F. M.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (09):
  • [8] Approximate controllability for Riemann-Liouville fractional differential equations
    Sahijwani, Lavina
    Sukavanam, Nagarajan
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2023, 13 (01): : 59 - 67
  • [9] Approximate Controllability for Weighted Semilinear Riemann–Liouville Fractional Differential Systems with Infinite Delay
    Fatima Zahra Mokkedem
    Differential Equations and Dynamical Systems, 2023, 31 : 709 - 727
  • [10] Finite time stability and relative controllability of Riemann-Liouville fractional delay differential equations
    Li, Mengmeng
    Wang, JinRong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 6607 - 6623