AlTiMgLiO medium entropy oxide additive for PEO-based solid polymer electrolytes in lithium ion batteries

被引:12
|
作者
Ritter, Timothy G. [1 ]
Goncalves, Josue M. [3 ,4 ]
Stoyanov, Stoyan [3 ]
Ghorbani, Alireza [3 ]
Shokuhfar, Tolou [2 ]
Shahbazian-Yassar, Reza [3 ]
机构
[1] Univ Illinois, Dept Civil & Mat Engn, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Biomed Engn, Chicago, IL 60607 USA
[3] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
[4] Univ Sao Paulo, Inst Quim, Ave Prof Lineu Prestes 748, BR-05508000 Sao Paulo, SP, Brazil
基金
美国国家科学基金会;
关键词
Solid polymer electrolytes; Ionic conductivity; Lithium-ion batteries; Polyethylene oxide; Multielement Oxide; Polymer composites; DIELECTRIC-CONSTANT; CONDUCTIVITY; ENHANCEMENT; STABILITY; MEMBRANES; ANODES;
D O I
10.1016/j.est.2023.108491
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solid polymer electrolytes (SPE) have attracted considerable attention as electrolytes for solid-state batteries due to their toughness, high safety, and ionic conductivities that can be comparable with liquid electrolytes, espe-cially at higher temperatures. However, polymers have low elastic moduli, which decrease at higher tempera-tures, limiting their ability to reduce dendrite formation. Mechanical blocking is one method of improving the interfacial layer and reducing dendritic growth but requires the elastic modulus of the polymer to be high enough to suppress lithium dendrites growth. Previous studies have focused on using unary metal oxides, which are limited by the percent of additives that can be included in the polymer before causing negative effects on electrochemical properties. In this study, we demonstrate a new strategy for improving the performance of polymers by synthesizing a multielement oxide (MEO) filler, AlTiMgLiO, to create a composite SPE with enhanced electrochemical performance. The synthesized AlTiMgLiO-containing SPE resulted in a voltage win-dow of 0-6.18 V and a lithium transference number of 0.42. The overpotential voltage during galvanostatic cycling was reduced due to the improvements made to the morphology. The improvement of the interfacial layer reduced Li dendritic growth, resulting in a capacity of 99.68 mAh g- 1 after 500 cycles, and a capacity retention of 78.69 %. The possible reasons for the improvement are discussed, providing a direction for future studies on the use of multielement materials as fillers in solid polymers electrolytes.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Polymeric polyhedral oligomeric silsesquioxane ionic liquids based solid polymer electrolytes for lithium ion batteries
    Lu, Qi
    Fu, Jifang
    Chen, Liya
    Shang, Dapeng
    Li, Mengmeng
    Xu, Yufeng
    Jia, Rongrong
    Yuan, Shuai
    Shi, Liyi
    JOURNAL OF POWER SOURCES, 2019, 414 : 31 - 40
  • [32] Stable Cycling of All-Solid-State Lithium Metal Batteries Enabled by Salt Engineering of PEO-Based Polymer Electrolytes
    Liu, Lujuan
    Wang, Tong
    Sun, Li
    Song, Tinglu
    Yan, Hao
    Li, Chunli
    Mu, Daobin
    Zheng, Jincheng
    Dai, Yang
    ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (02)
  • [33] Metal organic frameworks enabled rational design of multifunctional PEO-based solid polymer electrolytes
    Sun, Chang-Chun
    Yusuf, Abdulmalik
    Li, Shao-Wen
    Qi, Xiao-Lin
    Ma, Yue
    Wang, De-Yi
    CHEMICAL ENGINEERING JOURNAL, 2021, 414
  • [34] Microporous polymer electrolyte based on PVDF/PEO star polymer blends for lithium ion batteries
    Deng, Fangli
    Wang, Xiaoen
    He, Dan
    Hu, Ji
    Gong, Chunli
    Ye, Yun Sheng
    Xie, Xiaolin
    Xue, Zhigang
    JOURNAL OF MEMBRANE SCIENCE, 2015, 491 : 82 - 89
  • [35] Investigations on Poly (ethylene oxide) (PEO) - blend based solid polymer electrolytes for sodium ion batteries
    Koduru, H. K.
    Iliev, M. T.
    Kondamareddy, K. K.
    Karashanova, D.
    Vlakhov, T.
    Zhao, X-Z
    Scaramuzza, N.
    INERA CONFERENCE: VAPOR PHASE TECHNOLOGIES FOR METAL OXIDE AND CARBON NANOSTRUCTURES, 2016, 764
  • [36] Influence of MOF ligands on the electrochemical and interfacial properties of PEO-based electrolytes for all-solid-state lithium batteries
    Mathew, Deepa Elizabeth
    Gopi, Sivalingam
    Kathiresan, Murugavel
    Stephan, A. Manuel
    Thomas, Sabu
    ELECTROCHIMICA ACTA, 2019, 319 : 189 - 200
  • [37] Evaluating the electrochemical properties of PEO-based nanofibrous electrolytes incorporated with TiO2 nanofiller applicable in lithium-ion batteries
    Banitaba, Seyedeh Nooshin
    Semnani, Dariush
    Rezaei, Behzad
    Ensafi, Ali Asghar
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2019, 30 (05) : 1234 - 1242
  • [38] Waterborne Polyurethane Micelles Reinforce PEO-Based Electrolytes for Lithium Metal Batteries
    Shi, Zhen
    Zhou, Hongru
    Fan, Zixin
    Guo, Kairui
    Nie, Hui
    Zhou, Xingping
    Xue, Zhigang
    SMALL, 2024,
  • [39] The Effects of Electrospinning Structure on the Ion Conductivity of PEO-Based Polymer Solid-State Electrolytes
    Sun, Qihang
    Liu, Zhanna
    Zhu, Ping
    Liu, Jie
    Shang, Shenglong
    ENERGIES, 2023, 16 (15)
  • [40] Nonisothermal Crystallization Behaviors and Conductive Properties of PEO-Based Solid Polymer Electrolytes Containing Yttrium Oxide Nanoparticles
    Liang, Guijie
    Xu, Jie
    Xu, Weilin
    Shen, Xiaolin
    Bai, Zhikui
    Yao, Mu
    POLYMER ENGINEERING AND SCIENCE, 2011, 51 (12) : 2526 - 2534