Elliptic curves, ACM bundles and Ulrich bundles on prime Fano threefolds
被引:0
|
作者:
Ciliberto, Ciro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00173 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00173 Rome, Italy
Ciliberto, Ciro
[1
]
Flamini, Flaminio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00173 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00173 Rome, Italy
Flamini, Flaminio
[1
]
Knutsen, Andreas Leopold
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bergen, Dept Math, Postboks 7800, N-5020 Bergen, NorwayUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00173 Rome, Italy
Knutsen, Andreas Leopold
[2
]
机构:
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00173 Rome, Italy
DEL PEZZO THREEFOLD;
MODULI SPACES;
VECTOR-BUNDLES;
RANK-2;
SHEAVES;
D O I:
10.1007/s13348-023-00413-9
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let X be any smooth prime Fano threefold of degree 2g-2 in Pg+1, with g ? {3, ... , 10, 12}. We prove that for any integer d satisfying [ g+3/2 ] = d = g +3 the Hilbert scheme parametrizing smooth irreducible elliptic curves of degree d in X is nonempty and has a component of dimension d, which is furthermore reduced except for the case when (g, d) = (4, 3) and X is contained in a singular quadric. Consequently, we deduce that the moduli space of rank-two slope-stable ACM bundles F-d on X such that det(F-d) = O-X(1), c(2)(F-d) . O-X(1) = d and h(0)(F-d(-1)) = 0 is nonempty and has a component of dimension 2d - g - 2, which is furthermore reduced except for the case when (g, d) = (4, 3) and X is contained in a singular quadric. This completes the classification of rank-two ACM bundles on prime Fano three folds. Secondly, we prove that for every h ? Z(+) the moduli space of stable Ulrich bundles e of rank 2h and determinant O-X (3h) on X is nonempty and has a reduced component of dimension h(2)(g + 3) + 1; this result is optimal in the sense that there are no other Ulrich bundles occurring on X. This in particular shows that any prime Fano threefold is Ulrich wild.
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
Ciliberto, Ciro
Flamini, Flaminio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
Flamini, Flaminio
Knutsen, Andreas Leopold
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bergen, Dept Math, Postboks 7800, N-5020 Bergen, NorwayUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
机构:
Politecn Torino, Dept Sci Matematiche, c so Duca Abruzzi 24, I-10129 Turin, ItalyPolitecn Torino, Dept Sci Matematiche, c so Duca Abruzzi 24, I-10129 Turin, Italy
Antonelli, V. I. N. C. E. N. Z. O.
Casnati, G. I. A. N. F. R. A. N. C. O.
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Torino, Dept Sci Matematiche, c so Duca Abruzzi 24, I-10129 Turin, ItalyPolitecn Torino, Dept Sci Matematiche, c so Duca Abruzzi 24, I-10129 Turin, Italy
Casnati, G. I. A. N. F. R. A. N. C. O.
Genc, O. Z. H. A. N.
论文数: 0引用数: 0
h-index: 0
机构:
Jagiellonian Univ, Fac Math & Comp Sci, ul Lojasiewicza, PL-30348 Krakow, PolandPolitecn Torino, Dept Sci Matematiche, c so Duca Abruzzi 24, I-10129 Turin, Italy
机构:
Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, Japan
Fukuoka, Takeru
Hara, Wahei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Glasgow, Math & Stat Bldg, Univ Pl, Glasgow G12, Lanark, ScotlandUniv Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, Japan
Hara, Wahei
Ishikawa, Daizo
论文数: 0引用数: 0
h-index: 0
机构:
Waseda Univ, Sch Sci & Engn, Dept Math, Ohkubo 3-4-1,Shinjuku Ku, Tokyo 1698555, JapanUniv Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, Japan