Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%

被引:64
作者
Fehr, Austin M. K. [1 ]
Agrawal, Ayush [1 ]
Mandani, Faiz [1 ]
Conrad, Christian L. [1 ]
Jiang, Qi [2 ]
Park, So Yeon [2 ]
Alley, Olivia [3 ]
Li, Bor [4 ]
Sidhik, Siraj [5 ]
Metcalf, Isaac [5 ]
Botello, Christopher [1 ]
Young, James L. [2 ]
Even, Jacky [6 ]
Blancon, Jean Christophe [1 ]
Deutsch, Todd G. [2 ]
Zhu, Kai [2 ]
Albrecht, Steve [4 ]
Toma, Francesca M. [3 ]
Wong, Michael [1 ]
Mohite, Aditya D. [1 ,5 ]
机构
[1] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA
[2] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA
[3] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA USA
[4] Helmholtz Zent Berlin, Young Investigator Grp Perovskite Tandem Solar Cel, D-12489 Berlin, Germany
[5] Rice Univ, Mat Sci & Nanoengn, Houston, TX 77005 USA
[6] Univ Rennes, Inst FOTON, INSA Rennes, CNRS,UMR 6082, F-35000 Rennes, France
关键词
HYDROGEN-PRODUCTION; SEMICONDUCTOR-MATERIALS; PHOTOVOLTAICS; STABILITY; DEVICE;
D O I
10.1038/s41467-023-39290-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Achieving high solar-to-hydrogen (STH) efficiency concomitant with long-term durability using low-cost, scalable photo-absorbers is a long-standing challenge. Here we report the design and fabrication of a conductive adhesive-barrier (CAB) that translates >99% of photoelectric power to chemical reactions. The CAB enables halide perovskite-based photoelectrochemical cells with two different architectures that exhibit record STH efficiencies. The first, a co-planar photocathode-photoanode architecture, achieved an STH efficiency of 13.4% and 16.3 h to t(60), solely limited by the hygroscopic hole transport layer in the n-i-p device. The second was formed using a monolithic stacked silicon-perovskite tandem, with a peak STH efficiency of 20.8% and 102 h of continuous operation before t(60) under AM 1.5G illumination. These advances will lead to efficient, durable, and low-cost solar-driven water-splitting technology with multifunctional barriers. High-efficiency photoelectrodes, which integrate light absorption with catalysis, have been limited to costly materials. Here, the authors develop an anticorrosion barrier that enables low-cost semiconductors for integrated solar fuel devices with 20.8% solar-to-hydrogen energy conversion efficiency.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Transparent Stacked Photoanodes with Efficient Light Management for Solar-Driven Photoelectrochemical Cells
    Thanh Tai Nguyen
    Patel, Malkeshkumar
    Kim, Sangho
    Vinh-Ai Dao
    Kim, Joondong
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (08) : 10181 - 10190
  • [42] General Characterization Methods for Photoelectrochemical Cells for Solar Water Splitting
    Shi, Xinjian
    Cai, Lili
    Ma, Ming
    Zheng, Xiaolin
    Park, Jong Hyeok
    [J]. CHEMSUSCHEM, 2015, 8 (19) : 3192 - 3203
  • [43] A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting
    Le, Anh Quynh Huu
    Nguyen, Ngoc Nhu Thi
    Tran, Hai Duy
    Nguyen, Van-Huy
    Tran, Le-Hai
    [J]. BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2022, 13 : 1520 - 1530
  • [44] Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts
    Tao, Xiaoping
    Zhao, Yue
    Wang, Shengyang
    Li, Can
    Li, Rengui
    [J]. CHEMICAL SOCIETY REVIEWS, 2022, 51 (09) : 3561 - 3608
  • [45] Stable solar-driven water splitting by anodic ZnO nanotubular semiconducting photoanodes
    Faid, Alaa Y.
    Allam, Nageh K.
    [J]. RSC ADVANCES, 2016, 6 (83) : 80221 - 80225
  • [46] Metal-Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting
    Navalon, Sergio
    Dhakshinamoorthy, Amarajothi
    Alvaro, Mercedes
    Ferrer, Belen
    Garcia, Hermenegildo
    [J]. CHEMICAL REVIEWS, 2022, 123 (01) : 445 - 490
  • [47] Searching for breakthrough in seesaw-like contradictions to achieve high-efficiency solar-driven overall water splitting
    Li, Mingtao
    Tian, Na
    Zhang, Yihe
    Li, Jianming
    Huang, Hongwei
    [J]. NANO ENERGY, 2024, 126
  • [48] Dynamic model of a solar thermochemical water-splitting reactor with integrated energy collection and storage
    Xu, Rong
    Wiesner, Theodore F.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (03) : 2210 - 2223
  • [49] Suppression of Undesired Losses in Organometal Halide Perovskite-Based Photoanodes for Efficient Photoelectrochemical Water Splitting
    Choi, Hojoong
    Kim, Young Yun
    Seo, Sehun
    Jung, Yoonsung
    Yoo, So-Min
    Moon, Chan Su
    Jeon, Nam Joong
    Lee, Sanseong
    Lee, Kwanghee
    Toma, Francesca M.
    Seo, Jangwon
    Lee, Sanghan
    [J]. ADVANCED ENERGY MATERIALS, 2023, 13 (31)
  • [50] Nanocrystalline diamond on Si solar cells for direct photoelectrochemical water splitting
    Ashcheulov, Petr
    Kusko, Martin
    Fendrych, Frantisek
    Poruba, Ales
    Taylor, Andrew
    Jaeger, Ales
    Fekete, Ladislav
    Kraus, Ivo
    Kratochvilova, Irena
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2014, 211 (10): : 2347 - 2352