Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%

被引:63
|
作者
Fehr, Austin M. K. [1 ]
Agrawal, Ayush [1 ]
Mandani, Faiz [1 ]
Conrad, Christian L. [1 ]
Jiang, Qi [2 ]
Park, So Yeon [2 ]
Alley, Olivia [3 ]
Li, Bor [4 ]
Sidhik, Siraj [5 ]
Metcalf, Isaac [5 ]
Botello, Christopher [1 ]
Young, James L. [2 ]
Even, Jacky [6 ]
Blancon, Jean Christophe [1 ]
Deutsch, Todd G. [2 ]
Zhu, Kai [2 ]
Albrecht, Steve [4 ]
Toma, Francesca M. [3 ]
Wong, Michael [1 ]
Mohite, Aditya D. [1 ,5 ]
机构
[1] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA
[2] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA
[3] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA USA
[4] Helmholtz Zent Berlin, Young Investigator Grp Perovskite Tandem Solar Cel, D-12489 Berlin, Germany
[5] Rice Univ, Mat Sci & Nanoengn, Houston, TX 77005 USA
[6] Univ Rennes, Inst FOTON, INSA Rennes, CNRS,UMR 6082, F-35000 Rennes, France
关键词
HYDROGEN-PRODUCTION; SEMICONDUCTOR-MATERIALS; PHOTOVOLTAICS; STABILITY; DEVICE;
D O I
10.1038/s41467-023-39290-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Achieving high solar-to-hydrogen (STH) efficiency concomitant with long-term durability using low-cost, scalable photo-absorbers is a long-standing challenge. Here we report the design and fabrication of a conductive adhesive-barrier (CAB) that translates >99% of photoelectric power to chemical reactions. The CAB enables halide perovskite-based photoelectrochemical cells with two different architectures that exhibit record STH efficiencies. The first, a co-planar photocathode-photoanode architecture, achieved an STH efficiency of 13.4% and 16.3 h to t(60), solely limited by the hygroscopic hole transport layer in the n-i-p device. The second was formed using a monolithic stacked silicon-perovskite tandem, with a peak STH efficiency of 20.8% and 102 h of continuous operation before t(60) under AM 1.5G illumination. These advances will lead to efficient, durable, and low-cost solar-driven water-splitting technology with multifunctional barriers. High-efficiency photoelectrodes, which integrate light absorption with catalysis, have been limited to costly materials. Here, the authors develop an anticorrosion barrier that enables low-cost semiconductors for integrated solar fuel devices with 20.8% solar-to-hydrogen energy conversion efficiency.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Net primary energy balance of a solar-driven photoelectrochemical water-splitting device
    Zhai, Pei
    Haussener, Sophia
    Ager, Joel
    Sathre, Roger
    Walczak, Karl
    Greenblatt, Jeffery
    McKone, Thomas
    ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (08) : 2380 - 2389
  • [2] Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices
    Xiang, Chengxiang
    Weber, Adam Z.
    Ardo, Shane
    Berger, Alan
    Chen, YiKai
    Coridan, Robert
    Fountaine, Katherine T.
    Haussener, Sophia
    Hu, Shu
    Liu, Rui
    Lewis, Nathan S.
    Modestino, Miguel A.
    Shaner, Matthew M.
    Singh, Meenesh R.
    Stevens, John C.
    Sun, Ke
    Walczak, Karl
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (42) : 12974 - 12988
  • [3] Recent advances in non-metal doped titania for solar-driven photocatalytic/photoelectrochemical water-splitting
    Wang, Ying-Ying
    Chen, Yan-Xin
    Barakat, Tarek
    Zeng, Yu-Jia
    Liu, Jing
    Siffert, Stephane
    Su, Bao-Lian
    JOURNAL OF ENERGY CHEMISTRY, 2022, 66 : 529 - 559
  • [4] Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting
    Ager, Joel W.
    Shaner, Matthew R.
    Walczak, Karl A.
    Sharp, Ian D.
    Ardo, Shane
    ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (10) : 2811 - 2824
  • [5] Modeling, Simulation, and Fabrication of a Fully Integrated, Acid-stable, Scalable Solar-Driven Water-Splitting System
    Walczak, Karl
    Chen, Yikai
    Karp, Christoph
    Beeman, Jeffrey W.
    Shaner, Matthew
    Spurgeon, Joshua
    Sharp, Ian D.
    Amashukeli, Xenia
    West, William
    Jin, Jian
    Lewis, Nathan S.
    Xiang, Chengxiang
    CHEMSUSCHEM, 2015, 8 (03) : 544 - 551
  • [6] Transition Metal Dichalcogenide Nanocatalyst for Solar-Driven Photoelectrochemical Water Splitting
    Yoo, Jisun
    Cha, Eunhee
    Park, Jeunghee
    Lim, Soo A.
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2020, 23 (02): : 25 - 38
  • [7] Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells
    Qiu, Yongcai
    Liu, Wei
    Chen, Wei
    Chen, Wei
    Zhou, Guangmin
    Hsu, Po-Chun
    Zhang, Rufan
    Liang, Zheng
    Fan, Shoushan
    Zhang, Yuegang
    Cui, Yi
    SCIENCE ADVANCES, 2016, 2 (06):
  • [8] Organic/inorganic metal halide perovskites for solar-driven water splitting: properties, mechanism, and design
    Maity, Dipanjan
    Khan, Gobinda Gopal
    MATERIALS TODAY ENERGY, 2023, 37
  • [9] Moisture resistance in perovskite solar cells attributed to a water-splitting layer
    Kim, Min
    Alfano, Antonio
    Perotto, Giovanni
    Serri, Michele
    Dengo, Nicola
    Mezzetti, Alessandro
    Gross, Silvia
    Prato, Mirko
    Salerno, Marco
    Rizzo, Antonio
    Sorrentino, Roberto
    Cescon, Enrico
    Meneghesso, Gaudenzio
    Di Fonzo, Fabio
    Petrozza, Annamaria
    Gatti, Teresa
    Lamberti, Francesco
    COMMUNICATIONS MATERIALS, 2021, 2 (01)
  • [10] Integrated and Unassisted Solar Water-Splitting System by Monolithic Perovskite/Silicon Tandem Solar Cell
    Wang, Manjing
    Shi, Biao
    Zhang, Qixing
    Li, Xingliang
    Pan, Sanjing
    Zhao, Ying
    Zhang, Xiaodan
    SOLAR RRL, 2022, 6 (02)