Noisy Quantum Channel Characterization Using Quantum Neural Networks

被引:2
作者
Song, Junyang [1 ]
Lu, Bo [1 ]
Liu, Lu [1 ]
Wang, Chuan [1 ,2 ]
机构
[1] Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Appl Opt Beijing Area Major Lab, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum neural networks; noisy quantum channel; cost function; COMMUNICATION; INFORMATION;
D O I
10.3390/electronics12112430
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Channel noise is considered to be the main obstacle in long-distance quantum communication and distributed quantum networks. Here, employing a quantum neural network, we present an efficient method to study the model and detect the noise of quantum channels. Based on various types of noisy quantum channel models, we construct the architecture of the quantum neural network and the model training process. Finally, we perform experiments to verify the training effectiveness of the scheme, and the results show that the cost function of the quantum neural network could approach above 90% of the channel model.
引用
收藏
页数:14
相关论文
共 50 条
[21]   On physics-informed neural networks for quantum computers [J].
Markidis, Stefano .
FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8
[22]   Strong generalization in quantum neural networks [J].
Jiang, Jinzhe ;
Zhao, Yaqian ;
Li, Rengang ;
Li, Chen ;
Guo, Zhenhua ;
Fan, Baoyu ;
Li, Xuelei ;
Li, Ruyang ;
Zhang, Xin .
QUANTUM INFORMATION PROCESSING, 2023, 22 (12)
[23]   Quantum Gated Recurrent Neural Networks [J].
Li, Yanan ;
Wang, Zhimin ;
Xing, Ruipeng ;
Shao, Changheng ;
Shi, Shangshang ;
Li, Jiaxin ;
Zhong, Guoqiang ;
Gu, Yongjian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (04) :2493-2504
[24]   Scalable Quantum Neural Networks for Classification [J].
Wu, Jindi ;
Tao, Zeyi ;
Li, Qun .
2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, :38-48
[25]   Theory for Equivariant Quantum Neural Networks [J].
Nguyen, Quynh T. ;
Schatzki, Louis ;
Braccia, Paolo ;
Ragone, Michael ;
Coles, Patrick J. ;
Sauvage, Frederic ;
Larocca, Martin ;
Cerezo, M. .
PRX QUANTUM, 2024, 5 (02)
[26]   Strong generalization in quantum neural networks [J].
Jinzhe Jiang ;
Yaqian Zhao ;
Rengang Li ;
Chen Li ;
Zhenhua Guo ;
Baoyu Fan ;
Xuelei Li ;
Ruyang Li ;
Xin Zhang .
Quantum Information Processing, 22
[27]   Clifford Algebras, Quantum Neural Networks and Generalized Quantum Fourier Transform [J].
Trindade, Marco A. S. ;
Lula-Rocha, Vinicius N. A. ;
Floquet, S. .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2023, 33 (03)
[28]   Demonstrating Quantum Advantage in Hybrid Quantum Neural Networks for Model Capacity [J].
Kashif, Muhammad ;
Al-Kuwari, Saif .
2022 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING, ICRC, 2022, :36-44
[29]   Clifford Algebras, Quantum Neural Networks and Generalized Quantum Fourier Transform [J].
Marco A. S. Trindade ;
Vinícius N. A. Lula-Rocha ;
S. Floquet .
Advances in Applied Clifford Algebras, 2023, 33
[30]   Bidirectional quantum teleportation of an arbitrary number of qubits over noisy channel [J].
Sadeghi-Zadeh, Mohammad Sadegh ;
Houshmand, Monireh ;
Aghababa, Hossein ;
Kochakzadeh, Mohammad Hossein ;
Zarmehi, Fahimeh .
QUANTUM INFORMATION PROCESSING, 2019, 18 (11)