On polarization of spherical codes and designs

被引:5
作者
Boyvalenkov, P. G. [1 ]
Dragnev, P. D. [2 ]
Hardin, D. P. [3 ]
Saff, E. B. [3 ]
Stoyanova, M. M. [4 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, 8 G Bonchev Str, Sofia 1113, Bulgaria
[2] Purdue Univ, Dept Math Sci, Ft Wayne, IN 46805 USA
[3] Vanderbilt Univ, Ctr Construct Approximat, Dept Math, Nashville, TN 37240 USA
[4] Sofia Univ St Kliment Ohridski, Fac Math & Informat, 5 James Bourchier Blvd, Sofia 1164, Bulgaria
基金
美国国家科学基金会;
关键词
BOUNDS; ENERGY;
D O I
10.1016/j.jmaa.2023.127065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we investigate the N -point min-max and max-min polarization problems on the sphere for a large class of potentials in Rn. We derive universal lower and upper bounds on the polarization of spherical designs of fixed dimension, strength, and cardinality. The bounds are universal in the sense that they are a convex combination of potential function evaluations with nodes and weights independent of the class of potentials. As a consequence of our lower bounds, we obtain the Fazekas-Levenshtein bounds on the covering radius of spherical designs. Utilizing the existence of spherical designs, our polarization bounds are extended to general configurations. As examples we completely solve the min-max polarization problem for 120 points on S3 and show that the 600-cell is universally optimal for that problem. We also provide alternative methods for solving the max-min polarization problem when the number of points N does not exceed the dimension n and when N = n + 1. We further show that the cross-polytope has the best max-min polarization constant among all spherical 2-designs of N = 2n points for n = 2, 3, 4; for n >= 5, this statement is conditional on a well-known conjecture that the cross-polytope has the best covering radius. This max-min optimality is also established for all so-called centered codes.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] Signal Codes: Convolutional Lattice Codes
    Shalvi, Ofir
    Sommer, Naftali
    Feder, Meir
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (08) : 5203 - 5226
  • [42] Polar Codes' Simplicity, Random Codes' Durability
    Wang, Hsin-Po
    Duursma, Iwan M.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (03) : 1478 - 1508
  • [43] Blocking sets, minimal codes and trifferent codes
    Bishnoi, Anurag
    D'haeseleer, Jozefien
    Gijswijt, Dion
    Potukuchi, Aditya
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (06):
  • [44] Inequality between size and charge in spherical symmetry
    Anglada, Pablo
    Dain, Sergio
    Ortiz, Omar E.
    [J]. PHYSICAL REVIEW D, 2016, 93 (04)
  • [45] New quantum codes from CSS codes
    Grassl, Markus
    [J]. QUANTUM INFORMATION PROCESSING, 2023, 22 (01)
  • [46] Statistical characterization of the chordal product determinant of Grassmannian codes
    Alvarez-Vizoso, Javier
    Beltran, Carlos
    Cuevas, Diego
    Santamaria, Ignacio
    Tucek, Vit
    Peters, Gunnar
    [J]. INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2023, 12 (03) : 2406 - 2422
  • [47] On the b-Symbol Distances of Matrix Product Codes, Constacyclic Codes, and Reed-Muller Codes
    Pan, Xu
    Ling, San
    Liu, Hongwei
    Chen, Bocong
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2025, 71 (01) : 287 - 296
  • [48] Environmental effects of using different construction codes applied to reinforced concrete beam designs based on Model Code 2010 and Spanish Standard EHE-08
    Almirall, C.
    Petit-Boix, A.
    Sanjuan-Delmas, D.
    de la Fuente, A.
    Pujadas, P.
    Josa, A.
    [J]. ENGINEERING STRUCTURES, 2019, 179 : 438 - 447
  • [49] Small codes
    Balla, Igor
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (05) : 1680 - 1686
  • [50] Subspace Codes
    Khaleghi, Azadeh
    Silva, Danilo
    Kschischang, Frank R.
    [J]. CRYPTOGRAPHY AND CODING, PROCEEDINGS, 2009, 5921 : 1 - 21