Highly Localized Surface Plasmon Nanolasers via Strong Coupling

被引:10
作者
Liao, Jun-Wei [1 ]
Huang, Zhen-Ting [1 ]
Wu, Chia-Hung [2 ,3 ]
Gagrani, Nikita [4 ]
Tan, Hark Hoe [4 ]
Jagadish, Chennupati [4 ]
Chen, Kuo-Ping [5 ]
Lu, Tien-Chang [1 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Coll Elect & Comp Engn, Dept Photon, Hsinchu 30010, Taiwan
[2] Natl Chiao Tung Univ, Coll Photon, Tainan 71150, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Tainan 71150, Taiwan
[4] Australian Natl Univ, ARC Ctr Excellence Transformat Meta Opt Syst, Res Sch Phys, Dept Elect Mat Engn, Canberra, ACT 2600, Australia
[5] Natl Tsing Hua Univ, Inst Photon Technol, Hsinchu 30013, Taiwan
基金
澳大利亚研究理事会;
关键词
Surface plasmon polariton; Localized surface plasmon; Plasmonic nanolaser; Nanowire; Strong coupling; SPR SENSOR;
D O I
10.1021/acs.nanolett.3c00614
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface plasmons have robust and strong confine-ment to the light field which is beneficial for the light-matter interaction. Surface plasmon amplification by stimulated emission of radiation (SPACER) has the potential to be integrated on the semiconductor chip as a compact coherent light source, which can play an important role in further extension of Moore's law. In this study, we demonstrate the localized surface plasmon lasing at room temperature in the communication band using metallic nanoholes as the plasmonic nanocavity and InP nanowires as the gain medium. Optimizing laser performance has been demonstrated by coupling between two metallic nanoholes which adds another degree of freedom for manipulating the lasing properties. Our plasmonic nanolasers exhibit lower power consumption, smaller mode volumes, and higher spontaneous emission coupling factors due to enhanced light-matter interactions, which are very promising in the applications of high-density sensing and photonic integrated circuits.
引用
收藏
页码:4359 / 4366
页数:8
相关论文
共 33 条
[1]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[2]   Ten years of spasers and plasmonic nanolasers [J].
Azzam, Shaimaa, I ;
Kildishev, Alexander, V ;
Ma, Ren-Min ;
Ning, Cun-Zheng ;
Oulton, Rupert ;
Shalaev, Vladimir M. ;
Stockman, Mark, I ;
Xu, Jia-Lu ;
Zhang, Xiang .
LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
[3]   Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode [J].
Chen, Xi ;
Yang, Fan ;
Zhang, Cheng ;
Zhou, Jing ;
Guo, L. Jay .
ACS NANO, 2016, 10 (04) :4039-4045
[4]   Ultracompact Pseudowedge Plasmonic Lasers and Laser Arrays [J].
Chou, Yu-Hsun ;
Hong, Kuo-Bin ;
Chang, Chun-Tse ;
Chang, Tsu-Chi ;
Huang, Zhen-Ting ;
Cheng, Pi-Ju ;
Yang, Jhen-Hong ;
Lin, Meng-Hsien ;
Lin, Tzy-Rong ;
Chen, Kuo-Ping ;
Gwo, Shangjr ;
Lu, Tien-Chang .
NANO LETTERS, 2018, 18 (02) :747-753
[5]   High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum [J].
Chou, Yu-Hsun ;
Wu, Yen-Mo ;
Hong, Kuo-Bin ;
Chou, Bo-Tsun ;
Shih, Jheng-Hong ;
Chung, Yi-Cheng ;
Chen, Peng-Yu ;
Lin, Tzy-Rong ;
Lin, Chien-Chung ;
Lin, Sheng-Di ;
Lu, Tien-Chang .
NANO LETTERS, 2016, 16 (05) :3179-3186
[6]   Coupling in a dual metallo-dielectric nanolaser system [J].
Deka, Suruj S. ;
Pan, Si Hui ;
Gu, Qing ;
Fainman, Yeshaiahu ;
El Amili, Abdelkrim .
OPTICS LETTERS, 2017, 42 (22) :4760-4763
[7]   Dynamics and Stability of Mutually Coupled Nano-Lasers [J].
Han, Hong ;
Shore, K. Alan .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2016, 52 (11)
[8]   Scaling Laws for Perovskite Nanolasers With Photonic and Hybrid Plasmonic Modes [J].
Huang, Zhen-Ting ;
Chen, Jia-Wei ;
Li, Heng ;
Zhu, Yizhi ;
Cui, Qiannan ;
Xu, Chunxiang ;
Lu, Tien-Chang .
ADVANCED OPTICAL MATERIALS, 2022, 10 (19)
[9]   Plasmonic Cavity Coupling [J].
Hugall, James T. ;
Singh, Anshuman ;
van Hulst, Niek F. .
ACS PHOTONICS, 2018, 5 (01) :43-53
[10]   Exploitation of localized surface plasmon resonance [J].
Hutter, E ;
Fendler, JH .
ADVANCED MATERIALS, 2004, 16 (19) :1685-1706