In-situ high-energy X-ray diffraction study of the early-stage decomposition in 2:17-type Sm-Co-based permanent magnets

被引:10
|
作者
Song, Xin [1 ,2 ]
Huang, Dan [3 ]
Jia, Wentao [1 ,2 ]
Liu, Yao [1 ,2 ]
Gao, Jianrong [3 ]
Ren, Yang [4 ]
Ma, Tianyu [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[3] Northeastern Univ, Key Lab Electromagnet Proc Mat, Minist Educ, Shenyang 110819, Peoples R China
[4] City Univ Hong Kong, Dept Phys, Kowloon, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
High-energy synchrotron X-ray diffraction; Precipitation; Dislocations; Sm-Co magnets; TRANSMISSION ELECTRON-MICROSCOPY; MECHANICAL-PROPERTIES; PHASE-TRANSFORMATION; HIGH-TEMPERATURE; MICROSTRUCTURE; CU; PRECIPITATION; FE; ZR; COERCIVITY;
D O I
10.1016/j.actamat.2022.118580
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The complex interaction between precipitation and dislocations challenges the determination of the effective precipitate nucleation temperature (Tnd) of dislocation-bearing supersaturated solid solutions, in particular, for the 2:17-type Sm-Co-based permanent magnets that evolve gradual formation and dissociation of dislocations during cellular precipitation. In this study, the early-stage decomposition behavior of a solution-treated Sm25Co50.2Fe16.2Cu5.6Zr3.0 (wt.%) alloy with highly-faulted 2:17H (hexagonal Sm2Co17) was investigated using in-situ high-energy synchrotron X-ray diffraction (HES-XRD) and ex-situ high-resolution transmission electron microscopy (HR-TEM). The nucleation and growth of 1:5H (hexagonal SmCo5) precipitate during heating and isothermal tempering were observed in situ, clarifying a dispute in 2:17-type Sm-Co-based magnets. The effective nucleation temperature Tnd of 1:5H precipitates was determined to be -760 degrees C, which is much higher than the starting transformation temperature of 2:17H to 2:17R (rhombohedral Sm2Co17) phase governed by diffusion-controlled glides of Shockley partials, Ta-240 degrees C. TEM studies revealed that a pre-aging treatment at 550 degrees C (far below Tnd, but above Ta) causes dissociation of partial dislocations whereas a pre-aging treatment at 750 degrees C (slightly below Tnd) promotes the nucleation of 1:5H precipitates. As a result, after whole-process heattreating, the final magnet with pre-aging at 750 degrees C possesses better magnetic properties than the one with preaging at 550 degrees C and the one without pre-aging. These results reveal that upon heating thermally-activated motion of dislocations occurs prior to sufficient atomic clustering into precipitate nuclei in 2:17-type Sm-Co-based magnets, providing direct guidance for designing proper material processing towards high-performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Decomposition behavior in the early-stage oxidation of Sm2Co17-type magnets
    Zhang, Yong
    Cao, Xun
    Tan, Huiteng
    Gill, Vincent
    Lambourne, Alexis
    Yan, Alex Qingyu
    Huang, Yizhong
    SCRIPTA MATERIALIA, 2021, 200
  • [2] Overview of composition and technique process study on 2:17-type Sm-Co high-temperature permanent magnet
    Wang, Chao
    Zhu, Ming-Gang
    RARE METALS, 2021, 40 (04) : 790 - 798
  • [3] A study of recrystallization and phase transitions in intermetallic titanium aluminides by in-situ high-energy X-ray diffraction
    Liss, K. -D.
    Bartels, A.
    Clemens, H.
    Bystrzanowski, S.
    Stark, A.
    Buslaps, T.
    Schimansky, F. -P.
    Gerling, R.
    Schreyer, A.
    THERMEC 2006, PTS 1-5, 2007, 539-543 : 1519 - +
  • [4] An in-situ high-energy X-ray diffraction study on the hot-deformation behavior of a β-phase containing TiAl alloy
    Schmoelzer, T.
    Liss, K. -D.
    Kirchlechner, C.
    Mayer, S.
    Stark, A.
    Peel, M.
    Clemens, H.
    INTERMETALLICS, 2013, 39 : 25 - 33
  • [5] In-Situ High-Energy X-ray Diffraction Study of Austenite Decomposition During Rapid Cooling and Isothermal Holding in Two HSLA Steels
    Lin, Sen
    Borggren, Ulrika
    Stark, Andreas
    Borgenstam, Annika
    Mu, Wangzhong
    Hedstroem, Peter
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2021, 52 (05): : 1812 - 1825
  • [6] In-situ X-ray diffraction study of carbonate formation and decomposition in perovskite-type BCFZ
    Efimov, Konstantin
    Czuprat, Oliver
    Feldhoff, Armin
    JOURNAL OF SOLID STATE CHEMISTRY, 2011, 184 (05) : 1085 - 1089
  • [7] In Situ High-Energy X-Ray Diffraction Study of Load Partitioning in Nb/NiTi Nanocomposite Plate
    Yu, Cun
    Cui, Lishan
    Hao, Shijie
    Jiang, Daqiang
    Shi, Xiaobin
    Liu, Zhenyang
    Liu, Zunping
    Brown, Dennis E.
    Ren, Yang
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2015, 46A (07): : 3271 - 3275
  • [8] High temperature micromechanical behavior of Ti2AlN particle reinforced TiAl based composites investigated by in-situ high-energy X-ray diffraction
    Li, Jinguang
    Hu, Rui
    Zhou, Mi
    Gao, Zitong
    Wu, Yulun
    Luo, Xian
    MATERIALS & DESIGN, 2021, 212
  • [9] Overview of composition and technique process study on 2:17-type Sm–Co high-temperature permanent magnet
    Chao Wang
    Ming-Gang Zhu
    Rare Metals, 2021, 40 : 790 - 798
  • [10] In-Situ Characterization by High-Energy X-ray Diffraction of the Phase Transformations Leading to Transformation-Induced Plasticity-Aided Bainitic Steel
    Tournoud, Zelie
    De Geuser, Frederic
    Renou, Gilles
    Huin, Didier
    Donnadieu, Patricia
    Deschamps, Alexis
    QUANTUM BEAM SCIENCE, 2019, 3 (04)