From benchmark to bedside: transfer learning from social media to patient-provider text messages for suicide risk prediction

被引:6
作者
Burkhardt, Hannah A. [1 ,3 ]
Ding, Xiruo [1 ]
Kerbrat, Amanda [2 ]
Comtois, Katherine Anne [2 ]
Cohen, Trevor [1 ]
机构
[1] Univ Washington, Dept Biomed Informat & Med Educ, Seattle, WA 98109 USA
[2] Univ Washington, Dept Psychiat & Behav Sci, Seattle, WA 98109 USA
[3] Univ Washington, Biomed Informat & Med Educ, 850 Republican St, Seattle, WA 98109 USA
关键词
social media; natural language processing; artificial intelligence; suicide prevention; decision-making; computer assisted; delivery of health care;
D O I
10.1093/jamia/ocad062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objective: Compared to natural language processing research investigating suicide risk prediction with social media (SM) data, research utilizing data from clinical settings are scarce. However, the utility of models trained on SM data in text from clinical settings remains unclear. In addition, commonly used performance metrics do not directly translate to operational value in a real-world deployment. The objectives of this study were to evaluate the utility of SM-derived training data for suicide risk prediction in a clinical setting and to develop a metric of the clinical utility of automated triage of patient messages for suicide risk.Materials and Methods: Using clinical data, we developed a Bidirectional Encoder Representations from Transformers-based suicide risk detection model to identify messages indicating potential suicide risk. We used both annotated and unlabeled suicide-related SM posts for multi-stage transfer learning, leveraging customized contemporary learning rate schedules. We also developed a novel metric estimating predictive models' potential to reduce follow-up delays with patients in distress and used it to assess model utility.Results: Multi-stage transfer learning from SM data outperformed baseline approaches by traditional classification performance metrics, improving performance from 0.734 to a best F1 score of 0.797. Using this approach for automated triage could reduce response times by 15 minutes per urgent message.Discussion: Despite differences in data characteristics and distribution, publicly available SM data benefit clinical suicide risk prediction when used in conjunction with contemporary transfer learning techniques. Estimates of time saved due to automated triage indicate the potential for the practical impact of such models when deployed as part of established suicide prevention interventions.Conclusions: This work demonstrates a pathway for leveraging publicly available SM data toward improving risk assessment, paving the way for better clinical care and improved clinical outcomes.
引用
收藏
页码:1068 / 1078
页数:11
相关论文
共 49 条
[21]   The Unreasonable Effectiveness of Data [J].
Halevy, Alon ;
Norvig, Peter ;
Pereira, Fernando .
IEEE INTELLIGENT SYSTEMS, 2009, 24 (02) :8-12
[22]   Conflicting information from the Food and Drug Administration: Missed opportunity to lead standards for safe and effective medical artificial intelligence solutions [J].
Hernandez-Boussard, Tina ;
Lundgren, Matthew P. ;
Shah, Nigam .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2021, 28 (06) :1353-1355
[23]  
Hoff A., 2014, P 17 ACM C COMP SUPP, P626, DOI DOI 10.1145/2531602.2531675
[24]   Data, privacy, and the greater good [J].
Horvitz, Eric ;
Mulligan, Deirdre .
SCIENCE, 2015, 349 (6245) :253-255
[25]  
Howard J, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P328
[26]  
Hu Y., 2021, AGING MENT HEALTH, V7, P244
[27]   Two-way messaging therapy for depression and anxiety: longitudinal response trajectories [J].
Hull, Thomas D. ;
Malgaroli, Matteo ;
Connolly, Philippa S. ;
Feuerstein, Seth ;
Simon, Naomi M. .
BMC PSYCHIATRY, 2020, 20 (01)
[28]  
Ji S., 2021, P 13 LANGUAGE RESOUR
[29]   A framework for making predictive models useful in practice [J].
Jung, Kenneth ;
Kashyap, Sehj ;
Avati, Anand ;
Harman, Stephanie ;
Shaw, Heather ;
Li, Ron ;
Smith, Margaret ;
Shum, Kenny ;
Javitz, Jacob ;
Vetteth, Yohan ;
Seto, Tina ;
Bagley, Steven C. ;
Shah, Nigam H. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2021, 28 (06) :1149-1158
[30]  
Laparra Egoitz, 2021, Yearb Med Inform, V30, P239, DOI 10.1055/s-0041-1726522