Preparations for quantum simulations of quantum chromodynamics in 1+1 dimensions. I. Axial gauge

被引:47
作者
Farrell, Roland C. [1 ]
Chernyshev, Ivan A. [1 ]
Powell, Sarah J. M. [2 ]
Zemlevskiy, Nikita A. [1 ]
Illa, Marc [1 ]
Savage, Martin J. [1 ]
机构
[1] Univ Washington, Dept Phys, InQubator Quantum Simulat IQuS, Seattle, WA 98195 USA
[2] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada
关键词
EFFECTIVE-FIELD THEORY; MANY-BODY TREATMENT; LATTICE THEORIES; CONTINUUM-LIMIT; MODEL; INFORMATION; COMPUTATION; SYMMETRIES; DEPENDENCE; SYSTEMS;
D O I
10.1103/PhysRevD.107.054512
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Tools necessary for quantum simulations of 1 + 1 dimensional quantum chromodynamics are developed. When formulated in axial gauge and with two flavors of quarks, this system requires 12 qubits per spatial site with the gauge fields included via nonlocal interactions. Classical computations and D-wave's quantum annealer Advantage are used to determine the hadronic spectrum, enabling a decomposition of the masses and a study of quark entanglement. Color "edge" states confined within a screening length of the end of the lattice are found. IBM's seven-qubit quantum computers, ibmq_jakarta and ibm_perth, are used to compute dynamics from the trivial vacuum in one -flavor QCD with one spatial site. More generally, the Hamiltonian and quantum circuits for time evolution of 1 + 1 dimensional SU(Nc) gauge theory with Nf flavors of quarks are developed, and the resource requirements for large-scale quantum simulations are estimated.
引用
收藏
页数:43
相关论文
共 209 条
  • [11] artsci.washington, ABOUT US
  • [12] SU(2) hadrons on a quantum computer via a variational approach
    Atas, Yasar Y.
    Zhang, Jinglei
    Lewis, Randy
    Jahanpour, Amin
    Haase, Jan F.
    Muschik, Christine A.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [13] Accelerating Lattice Quantum Field Theory Calculations via Interpolator Optimization Using Noisy Intermediate-Scale Quantum Computing
    Avkhadiev, A.
    Shanahan, P. E.
    Young, R. D.
    [J]. PHYSICAL REVIEW LETTERS, 2020, 124 (08)
  • [14] Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories
    Banerjee, D.
    Boegli, M.
    Dalmonte, M.
    Rico, E.
    Stebler, P.
    Wiese, U. -J.
    Zoller, P.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (12)
  • [15] STRONG-COUPLING CALCULATIONS OF LATTICE GAUGE THEORIES - (1+1)-DIMENSIONAL EXERCISES
    BANKS, T
    SUSSKIND, L
    KOGUT, J
    [J]. PHYSICAL REVIEW D, 1976, 13 (04): : 1043 - 1053
  • [16] The mass spectrum of the Schwinger model with matrix product states
    Banuls, M. C.
    Cichy, K.
    Cirac, J. I.
    Jansen, K.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11):
  • [17] Simulating lattice gauge theories within quantum technologies
    Banuls, Mari Carmen
    Blatt, Rainer
    Catani, Jacopo
    Celi, Alessio
    Cirac, Juan Ignacio
    Dalmonte, Marcello
    Fallani, Leonardo
    Jansen, Karl
    Lewenstein, Maciej
    Montangero, Simone
    Muschik, Christine A.
    Reznik, Benni
    Rico, Enrique
    Tagliacozzo, Luca
    Van Acoleyen, Karel
    Verstraete, Frank
    Wiese, Uwe-Jens
    Wingate, Matthew
    Zakrzewski, Jakub
    Zoller, Peter
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (08)
  • [18] Efficient Basis Formulation for (1+1)-Dimensional SU(2) Lattice Gauge Theory: Spectral Calculations with Matrix Product States
    Banuls, Mari Carmen
    Cichy, Krzysztof
    Cirac, J. Ignacio
    Jansen, Karl
    Kuehn, Stefan
    [J]. PHYSICAL REVIEW X, 2017, 7 (04):
  • [19] Chiral condensate in the Schwinger model with matrix product operators
    Banuls, Mari Carmen
    Cichy, Krzysztof
    Jansen, Karl
    Saito, Hana
    [J]. PHYSICAL REVIEW D, 2016, 93 (09)
  • [20] Bauer C. W., 2023, PHYS REV D, V107