Aligned Spatial-Temporal Memory Network for Thermal Infrared Target Tracking

被引:61
|
作者
Yuan, Di [1 ]
Shu, Xiu [2 ]
Liu, Qiao [3 ]
He, Zhenyu [4 ]
机构
[1] Xidian Univ, Guangzhou Inst Technol, Guangzhou 510555, Peoples R China
[2] Harbin Inst Technol, Sch Sci, Shenzhen 518055, Peoples R China
[3] Chongqing Normal Univ, Natl Ctr Appl Math, Chongqing 401331, Peoples R China
[4] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518055, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Target tracking; Task analysis; Training; Interference; Benchmark testing; Feature extraction; Convolution; Thermal infrared tracking; spatial-temporal memory network; aligned matching module; OBJECT TRACKING;
D O I
10.1109/TCSII.2022.3223871
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Thermal infrared (TIR) target tracking is susceptible to occlusion and similarity interference, which obviously affects the tracking results. To resolve this problem, we develop an Aligned Spatial-Temporal Memory network-based Tracking method (ASTMT) for the TIR target tracking task. Specifically, we model the scene information in the TIR target tracking scenario using the spatial-temporal memory network, which can effectively store the scene information and decrease the interference of similarity interference that is beneficial to the target. In addition, we use an aligned matching module to correct the parameters of the spatial-temporal memory network model, which can effectively alleviate the impact of occlusion on the target estimation, hence boosting the tracking accuracy even further. Through ablation study experiments, we have demonstrated that the spatial-temporal memory network and the aligned matching module in the proposed ASTMT tracker are exceptionally successful. Our ASTMT tracking method performs well on the PTB-TIR and LSOTB-TIR benchmarks contrasted with other tracking methods.
引用
收藏
页码:1224 / 1228
页数:5
相关论文
共 50 条
  • [1] Object Tracking via Spatial-Temporal Memory Network
    Zhou, Zikun
    Li, Xin
    Zhang, Tianzhu
    Wang, Hongpeng
    He, Zhenyu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) : 2976 - 2989
  • [2] Multiple Traffic Target Tracking with Spatial-Temporal Affinity Network
    Sun, Yamin
    Zhao, Yue
    Wang, Sirui
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [3] Multiple Traffic Target Tracking with Spatial-Temporal Affinity Network
    Sun, Yamin
    Zhao, Yue
    Wang, Sirui
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [4] Dynamic memory network with spatial-temporal feature fusion for visual tracking
    Zhang, Hongchao
    Bao, Hua
    Lu, Yixiang
    Zhang, Dexiang
    Xun, Lina
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (05)
  • [5] Video Object Detection with an Aligned Spatial-Temporal Memory
    Xiao, Fanyi
    Lee, Yong Jae
    COMPUTER VISION - ECCV 2018, PT VIII, 2018, 11212 : 494 - 510
  • [6] A spatial-temporal contexts network for object tracking
    Huang, Kai
    Xiao, Kai
    Chu, Jun
    Leng, Lu
    Dong, Xingbo
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [7] A lightweight network for infrared small target detection based on spatial-temporal associated data
    Xu, Yin
    Tan, Hai
    SEVENTH SYMPOSIUM ON NOVEL PHOTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATIONS, 2021, 11763
  • [8] Spatial-temporal constrained particle filter for cooperative target tracking
    Xu, Cheng
    Wang, Xinxin
    Duan, Shihong
    Wan, Jiawang
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2021, 176
  • [9] Target-Aware Tracking With Spatial-Temporal Context Attention
    He, Kai-Jie
    Zhang, Can-Long
    Xie, Sheng
    Li, Zhi-Xin
    Wang, Zhi-Wen
    Qin, Rui-Guo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (08) : 7176 - 7189
  • [10] Based on spatial-temporal multiframe association infrared target detection
    Wang, Zhonghua
    Wang, Chao
    Huang, Faliang
    Liu, Jianguo
    MIPPR 2015: AUTOMATIC TARGET RECOGNITION AND NAVIGATION, 2015, 9812