Emerging role of TAK1 in the regulation of skeletal muscle mass

被引:2
|
作者
Roy, Anirban [1 ]
Narkar, Vihang A. [2 ]
Kumar, Ashok [1 ,3 ]
机构
[1] Univ Houston, Coll Pharm, Dept Pharmacol & Pharmaceut Sci, Houston, TX USA
[2] Univ Texas Hlth Sci Ctr, Brown Fdn Inst Mol Med, McGovern Med Sch, Houston, TX USA
[3] Univ Houston, Coll Pharm, Dept Pharmacol & Pharmaceut Sci, Hlth Bldg 2,Room 5012, Houston, TX 77204 USA
基金
美国国家卫生研究院;
关键词
hypertrophy; neuromuscular junctions; protein synthesis; signaling; skeletal muscle atrophy; TAK1; ACTIVATED KINASE 1; NF-KAPPA-B; TGF-BETA; PROTEIN-SYNTHESIS; MAMMALIAN TARGET; INDEPENDENT ACTIVATION; SIGNALING PATHWAYS; OXIDATIVE STRESS; MESSENGER-RNA; UP-REGULATION;
D O I
10.1002/bies.202300003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Maintenance of skeletal muscle mass and strength throughout life is crucial for heathy living and longevity. Several signaling pathways have been implicated in the regulation of skeletal muscle mass in adults. TGF-beta-activated kinase 1 (TAK1) is a key protein, which coordinates the activation of multiple signaling pathways. Recently, it was discovered that TAK1 is essential for the maintenance of skeletal muscle mass and myofiber hypertrophy following mechanical overload. Forced activation of TAK1 in skeletal muscle causes hypertrophy and attenuates denervation-induced muscle atrophy. TAK1-mediated signaling in skeletal muscle promotes protein synthesis, redox homeostasis, mitochondrial health, and integrity of neuromuscular junctions. In this article, we have reviewed the role and potential mechanisms through which TAK1 regulates skeletal muscle mass and growth. We have also proposed future areas of research that could be instrumental in exploring TAK1 as therapeutic target for improving muscle mass in various catabolic conditions and diseases.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] TAK1 signaling is a potential therapeutic target for pathological angiogenesis
    Zhu, Linxin
    Lama, Suraj
    Tu, Leilei
    Dusting, Gregory J.
    Wang, Jiang-Hui
    Liu, Guei-Sheung
    ANGIOGENESIS, 2021, 24 (03) : 453 - 470
  • [42] Brain endothelial TAK1 and NEMO safeguard the neurovascular unit
    Ridder, Dirk A.
    Wenzel, Jan
    Mueller, Kristin
    Toellner, Kathrin
    Tong, Xin-Kang
    Assmann, Julian C.
    Stroobants, Stijn
    Weber, Tobias
    Niturad, Cristina
    Fischer, Lisanne
    Lembrich, Beate
    Wolburg, Hartwig
    Grand'Maison, Marilyn
    Papadopoulos, Panayiota
    Korpos, Eva
    Truchetet, Francois
    Rades, Dirk
    Sorokin, Lydia M.
    Schmidt-Supprian, Marc
    Bedell, Barry J.
    Pasparakis, Manolis
    Balschun, Detlef
    D'Hooge, Rudi
    Loescher, Wolfgang
    Hamel, Edith
    Schwaninger, Markus
    JOURNAL OF EXPERIMENTAL MEDICINE, 2015, 212 (10) : 1529 - 1549
  • [43] Activated Macrophage Survival Is Coordinated by TAK1 Binding Proteins
    Mihaly, September R.
    Morioka, Sho
    Ninomiya-Tsuji, Jun
    Takaesu, Giichi
    PLOS ONE, 2014, 9 (04):
  • [44] Role of Pannexin 1 ATP-Permeable Channels in the Regulation of Signaling Pathways during Skeletal Muscle Unloading
    Zaripova, Ksenia A.
    Kalashnikova, Ekaterina P.
    Belova, Svetlana P.
    Kostrominova, Tatiana Y.
    Shenkman, Boris S.
    Nemirovskaya, Tatiana L.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (19)
  • [45] Oxindole derivatives as inhibitors of TAK1 kinase
    Lockman, Jeffrey W.
    Reeder, Matthew D.
    Robinson, Rosann
    Ormonde, Patricia A.
    Cimbora, Daniel M.
    Williams, Brandi L.
    Willardsen, J. Adam
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2011, 21 (06) : 1724 - 1727
  • [46] The regulation of polyamine pathway proteins in models of skeletal muscle hypertrophy and atrophy: a potential role for mTORC1
    Tabbaa, Michael
    Gomez, Tania Ruz
    Campelj, Dean G.
    Gregorevic, Paul
    Hayes, Alan
    Goodman, Craig A.
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2021, 320 (06): : C987 - C999
  • [47] Differential Roles of ASK1 and TAK1 in Helicobacter pylori-Induced Cellular Responses
    Hayakawa, Yoku
    Hirata, Yoshihiro
    Kinoshita, Hiroto
    Sakitani, Kosuke
    Nakagawa, Hayato
    Nakata, Wachiko
    Takahashi, Ryota
    Sakamoto, Kei
    Maeda, Shin
    Koike, Kazuhiko
    INFECTION AND IMMUNITY, 2013, 81 (12) : 4551 - 4560
  • [49] Suppression of Tak1 Promotes Prostate Tumorigenesis
    Wu, Min
    Shi, Lihong
    Cimic, Adela
    Romero, Lina
    Sui, Guangchao
    Lees, Cynthia J.
    Cline, J. Mark
    Seals, Darren F.
    Sirintrapun, Joseph S.
    McCoy, Thomas P.
    Liu, Wennuan
    Kim, Jin Woo
    Hawkins, Gregory A.
    Peehl, Donna M.
    Xu, Jianfeng
    Cramer, Scott D.
    CANCER RESEARCH, 2012, 72 (11) : 2833 - 2843
  • [50] TAK1 blockade as a therapy for retinal neovascularization
    Wang, Jiang-Hui
    Lin, Fan-Li
    Chen, Jinying
    Zhu, Linxin
    Chuang, Yu-Fan
    Tu, Leilei
    Ma, Chenkai
    Ling, Damien
    Hewitt, Alex W.
    Tseng, Ching-Li
    Shah, Manisha H.
    Bui, Bang V.
    van Wijngaarden, Peter
    Dusting, Gregory J.
    Wang, Peng-Yuan
    Liu, Guei-Sheung
    PHARMACOLOGICAL RESEARCH, 2023, 187