Higher-order topological phases emerging from Su-Schrieffer-Heeger stacking

被引:15
|
作者
Luo, Xun-Jiang [1 ,2 ,3 ]
Pan, Xiao-Hong [2 ,3 ,4 ,5 ]
Liu, Chao-Xing [6 ]
Liu, Xin [2 ,3 ,4 ,5 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, Inst Quantum Sci & Engn, Wuhan 430074, Hubei, Peoples R China
[4] Wuhan Inst Quantum Technol, Wuhan 430074, Hubei, Peoples R China
[5] Hubei Key Lab Gravitat & Quantum Phys, Wuhan 430074, Hubei, Peoples R China
[6] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
基金
中国国家自然科学基金;
关键词
Compendex;
D O I
10.1103/PhysRevB.107.045118
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we develop a systematic approach of constructing and classifying the model Hamiltonians for two-dimensional (2D) higher-order topological phase with corner zero-energy states (CZESs). Our approach is based on the direct construction of an analytical solution of the CZESs in a series of 2D systems stacking the 1D extended Su-Schrieffer-Heeger (SSH) model, two copies of the two-band SSH model, along with two orthogonal directions. Fascinatingly, our approach not only gives the celebrated Benalcazar-Bernevig-Hughes and 2D SSH models but also reveals a novel model and we name it 2D crossed SSH model. Although these three models exhibit completely different bulk topology, we find that the CZESs can be universally characterized by edge winding number for 1D edge states, attributing to their unified Hamiltonian construction form and edge topology. Remarkably, our principle of constructing CZESs can be readily generalized to 3D and superconducting systems. Our work sheds new light on the theoretical understanding of the higher-order topological phases and paves the way to looking for higher-order topological insulators and superconductors.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Realization of the square-root higher-order topology in decorated Su-Schrieffer-Heeger electric circuits
    Guo, Shengqun
    Pan, Guangwu
    Huang, Jinke
    Huang, Ruimin
    Zhuang, Fengjiang
    Su, Shaojian
    Lin, Zhili
    Qiu, Weibin
    Kan, Qiang
    APPLIED PHYSICS LETTERS, 2023, 123 (04)
  • [22] Topological and nontopological features of generalized Su-Schrieffer-Heeger models
    Ahmadi, N.
    Abouie, J.
    Baeriswyl, D.
    PHYSICAL REVIEW B, 2020, 101 (19)
  • [23] Observation of the topological soliton state in the Su-Schrieffer-Heeger model
    Meier, Eric J.
    An, Fangzhao Alex
    Gadway, Bryce
    NATURE COMMUNICATIONS, 2016, 7
  • [24] Topological bound states in interacting Su-Schrieffer-Heeger rings
    Marques, A. M.
    Dias, R. G.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (30)
  • [25] Light bullets in Su-Schrieffer-Heeger photonic topological insulators
    Ivanov, Sergey K.
    Kartashov, Yaroslav V.
    Torner, Lluis
    PHYSICAL REVIEW A, 2023, 107 (03)
  • [26] Topological marker approach to an interacting Su-Schrieffer-Heeger model
    Melo, Pedro B.
    Junior, Sebastiao A. S.
    Chen, Wei
    Mondaini, Rubem
    Paiva, Thereza
    PHYSICAL REVIEW B, 2023, 108 (19)
  • [27] Tunable topological edge modes in Su-Schrieffer-Heeger arrays
    Chaplain, G. J.
    Gliozzi, A. S.
    Davies, B.
    Urban, D.
    Descrovi, E.
    Bosia, F.
    Craster, R. V.
    APPLIED PHYSICS LETTERS, 2023, 122 (22)
  • [28] Topological quantum interference in a pumped Su-Schrieffer-Heeger lattice
    Li, Zeng-Zhao
    Atalaya, Juan
    Whaley, K. Birgitta
    PHYSICAL REVIEW A, 2022, 105 (05)
  • [29] Topological invariants in dissipative extensions of the Su-Schrieffer-Heeger model
    Dangel, Felix
    Wagner, Marcel
    Cartarius, Holger
    Main, Joerg
    Wunner, Gunter
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [30] Subwavelength Su-Schrieffer-Heeger topological modes in acoustic waveguides
    Coutant, Antonin
    Achilleos, Vassos
    Richoux, Olivier
    Theocharis, Georgios
    Pagneux, Vincent
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2022, 151 (06): : 3626 - 3632